• Title/Summary/Keyword: Neural conduction

Search Result 32, Processing Time 0.022 seconds

The relationship between nerve conduction studies and neuropathic pain in sciatic nerve injury due to intramuscular injection

  • Fidanci, Halit;Ozturk, Ilker
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.124-131
    • /
    • 2021
  • Background: Sciatic nerve injury due to intramuscular injection (SNIII) is still a health problem. This study aimed to determine whether there is a correlation between neuropathic pain and electrodiagnostic findings in SNIII. Methods: Patients whose clinical and electrodiagnostic findings were compatible with SNIII participated in this retrospective cohort study. Compound muscle action potential (CMAP) and sensory nerve action potential (SNAP) amplitudes of the sural, superficial peroneal, peroneal, and tibial nerves were graded from 1 to 4. Leeds assessment of neuropathic symptoms and signs scale (LANSS) was applied to all patients. Results: Forty-eight patients were included in the study, 67% of whom had a LANSS score ≥ 12. Sural SNAP amplitude abnormalities were present in 8 (50%) out of 16 patients with a LANSS score < 12, and 28 (87.5%) out of 32 patients with a LANSS score ≥ 12, with significant differences between the groups (P = 0.011). There was a positive correlation between the LANSS score and the sural SNAP amplitude grading (P = 0.001, r = 0.476). A similar positive correlation was also found in the LANSS score and the tibial nerve CMAP amplitude grading (P = 0.004, r = 0.410). Conclusions: This study showed a positive correlation between the severity of tibial nerve CMAP/sural SNAP amplitude abnormality and LANSS score in SNIII. Neuropathic pain may be more common in SNIII patients with sural nerve SNAP amplitude abnormality.

Patterns of Nerve Conduction Abnormalities in Patients with Type 2 Diabetes Mellitus According to the Clinical Phenotype Determined by the Current Perception Threshold

  • Park, Joong Hyun;Won, Jong Chul
    • Diabetes and Metabolism Journal
    • /
    • v.42 no.6
    • /
    • pp.519-528
    • /
    • 2018
  • Background: Clinical manifestations of diabetic peripheral neuropathy (DPN) vary along the course of nerve damage. Nerve conduction studies (NCS) have been suggested as a way to confirm diagnoses of DPN, but the results have limited utility for evaluating clinical phenotypes. The current perception threshold (CPT) is a complementary method for diagnosing DPN and assessing DPN symptoms. We compared NCS variables according to clinical phenotypes determined by CPT measurements. Methods: We retrospectively enrolled patients with type 2 diabetes mellitus who underwent both NCS and CPT tests using a neurometer. CPT grades were used to determine the clinical phenotypes of DPN: normoesthesia (0 to 1.66), hyperesthesia (1.67 to 6.62), and hypoesthesia/anesthesia (6.63 to 12.0). The Michigan Neuropathy Screening Instrument (MNSI) was used to determine a subjective symptom score. DPN was diagnosed based on both patient symptoms (MNSI score ${\geq}3$) and abnormal NCS results. Results: A total of 202 patients (117 men and 85 women) were included in the final analysis. The average age was 62.6 years, and 71 patients (35.1%) were diagnosed with DPN. The CPT variables correlated with MNSI scores and NCS variables in patients with diabetes. Linear regression analyses indicated that hypoesthesia was associated with significantly lower summed velocities and sural amplitudes and velocities, and higher summed latencies, than normoesthesia. Sural amplitude was significantly lower in patients with hyperesthesia than in patients with normoesthesia. Conclusion: NCS variables differed among patients with diabetes according to clinical phenotypes based on CPT and decreased sural nerve velocities was associated with hyperesthesia.

Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network (신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류)

  • Kim, Ahyoung;Jang, Eun-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • The mechanism of emotion is complex and influenced by a variety of factors, so that it is crucial to analyze emotion in broad and diversified perspectives. In this study, we classified neutral and negative emotions(sadness, fear, surprise) using arousal evaluation, which is one of the psychological evaluation scales, as well as physiological signals. We have not only revealed the difference between physiological signals coupled to the emotions, but also assessed how accurate these emotions can be classified by our emotional recognizer based on neural network algorithm. A total of 146 participants(mean age $20.1{\pm}4.0$, male 41%) were emotionally stimulated while their physiological signals of the electrocardiogram, blood flow, and dermal activity were recorded. In addition, the participants evaluated their psychological states on the emotional rating scale in response to the emotional stimuli. Heart rate(HR), standard deviation(SDNN), blood flow(BVP), pulse wave transmission time(PTT), skin conduction level(SCL) and skin conduction response(SCR) were calculated before and after the emotional stimulation. As a result, the difference between physiological responses was verified corresponding to the emotions, and the highest emotion classification performance of 86.9% was obtained using the combined analysis of arousal and physiological features. This study suggests that negative emotion can be categorized by psychological and physiological evaluation along with the application of machine learning algorithm, which can contribute to the science and technology of detecting human emotion.

Neurobiology and Neurobiomechanics for Neural Mobilization (신경가동성에 대한 신경생물학과 신경생역학적 이해)

  • Kim Jae-Hun;Yuk Goon-Chan;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Nervous system is clinically important, and involved in most disorders directly or indirectly. It could be injury and be a source of symptoms. Injury of central or peripheral nervous system injury may affect that mechanism and interrupt normal function. An understanding of the concepts of axonal transport is important for physical therapist who treat injury of nerves. Three connective tissue layers are the endoneurium, perineurium, epineurium. Each has its own special structural characteristics and functional properties. The blood supply to the nervous system is well equipped in all dynamic and static postures with intrinsic and extrinsic vasculation. After nerve injury, alternations in the ionic compression or pressures within this environment may interfere with blood flow and, consequently conduction and the flow of axoplasm. The cytoskeleton are not static. On the contrary, elements of the cytoskeleton are dynamically regulated and are very likely in continual motion. It permits neural mobility. There are different axonal transport systems within a single axon, of which two main flows have been identified : First, anterograde transport system, Secondly, retrograde transport system. The nervous system adapts lengthening in two basic ways. The one is that the development of tension or increased pressure within the tissues, increased intradural pressure. The other is movements that are gross movement and movement occurring intraneurally between the connective tissues and the neural tissues. In this article, we emphasize the biologic aspects of nervous system that influenced by therapeutic approaches. Although identified scientific information in basic science is utilized at clinic, we would attain the more therapeutic effects and develop the physical therapy science.

  • PDF

Expression and Localization of Brain Glutamate Dehydrogenase with Its Monoclonal Antibody

  • Lee, Jong-Eun;Choe, Su-Yeong;Jo, Seong-U
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.71-80
    • /
    • 1998
  • Glutamate dehydrogenase (GDH) is one of the main enzymes involved in the formation and metabolism of the neurotransmitter glutamate. In the present study, we investigated the distribution of the GDH-immunoreactive cells in the rat brain using monoclonal antibodies against bovine brain GDH isoprotein. GDH-immunoreactive cell were distributed in the basal ganglia, thalamus and the nuclei belong to substantia innominata, and its connecting area, subthalamic nucleus, zona incerta, and substantia niqra. We could see GDH-immunoreactive cells in the hippocampus, septal nuclei associated with the limbic system, the anterior thalamic nuclei connecting between the hypothalamus and limbic system, and its associated structures, amygdaloid nuclear complex, the dorsal raphe and median raphe nuclei and the reticular formation of the midbrain. The GDH-immunoreactive cells were shown in the pyramidal neurons of the cerebral cortex, the Purkinie cells of the cerebella cortex, their associated structures, ventral thalamic nuclei and the reticular thalamic nuclei that seem to function as neural conduction in the thalamus.

  • PDF

Tandem Repeats (CCTTT)n in the Promoter of iNOS Gene in Korean Genome

  • Baek, Sun-Ah;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.167-170
    • /
    • 2009
  • Nitric oxide is an important factor to regulate the biochemical reactions in the body such as expansion of blood vessel, neural conduction and antimicrobial activity. There are two forms of nitric oxide synthase and iNOS has attracted most attention because it is involved in the development of diabetes and cardiac disease condition. There are several regulatory sequences in the promoter region of iNOS gene. One of them is (CCTTT)n. It has been reported that the number of tandem repeat of (CCTTT)n varies from population to population. So, we analyzed (CCTTT)n polymorphism in Korean genome for the purpose of comparison. According to our present study Koreans are different from other Asians reported previously because $(CCTTT)_{10}$ is the highest incidence as opposed to $(CCTTT)_{12}$ for other countries. This study should facilitate the understanding of the expression of iNOS gene in different population.

  • PDF

Local Anesthetics for Dental Procedure (치과시술에 사용되는 국소마취제)

  • Kim, Cheul Hong;Yoon, Ji Young
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.13 no.3
    • /
    • pp.71-79
    • /
    • 2013
  • Local pain management is the most critical aspect of patient care in dentistry. Local anesthesia is a reversible blockade of nerve conduction in an applied area that produces loss of sensation. The chemical agents used to produce local anesthesia stabilize neuronal membranes by inhibiting the ionic fluxes required for the propagation of neural impulses. Proper local anesthesia permits the dental surgeon to perform the necessary surgical procedure in a careful, gentle fashion that will be less stressful for both the operator and the patient. The improvements in agents for local anesthesia are probably the most significant advances that have occurred in dental science. Today's anesthetics are safe, effective, and can be administered with insignificant soft tissue damage and minimal concerns for allergic reactions. This article reviews the widely used local anesthetic agents for obtaining local anesthesia, and also discusses some frequently seen complications.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Journal of Audiology & Otology
    • /
    • v.23 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Korean Journal of Audiology
    • /
    • v.23 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

A Study of Nerve Conduction Velocity of Normal Adults (정상성인의 신경전도속도에 관한 연구)

  • Choi, Kyoung-Chan;Hah, Jung-Sang;Byun, Yeung-Ju;Park, Choong-Suh;Yang, Chang-Heon
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.1
    • /
    • pp.151-163
    • /
    • 1989
  • Nerve conduction studies help delineate the extent and distribution of the neural lesion. The nerve conduction was studied on upper(median, ulnar and radial nerves) and lower(personal, posterior tibial and sural nerves) extremities in 83 healthy subjects 23 to 66 years of age. and normal values were established(Table 1). The mean motor terminal latency (TL) were : median. 3.6(${\pm}0.6$)milliseconds ; ulnar. 2.9(${\pm}0.5$) milliseconds ; radial nerve. 2.3(${\pm}0.4$) milliseconds. Mean motor nerve conduction velocity(MNCV) along distal and proximal segments: median. 61.2(${\pm}9.1$) (W-E) and 57.8(${\pm}13.2$) (E-Ax) meters per second ; ulnar. 63.7(${\pm}9.1$) (W-E) and 50.(${\pm}10.0$) meters per second. Mean sensory nerve conduction velocity(SNCV) : median. 34.7(${\pm}6.7$) (F-W), 63.7(${\pm}7.1$) (W-E) and 62.8(${\pm}12.3$) (E-Ax)meters per second ; ulnar. 38.0(${\pm}6.7$)(F-W), 63.4(${\pm}7.5$) (W-E) and 57.0(${\pm}10.1$) (E-Ax)meters per second ; radial, 45.3(${\pm}6.8$) (F-W) and 64.2(${\pm}11.0$) (W-E) meters per second ; sural nerve, 43.4(${\pm}6.1$) meters per second. The amplitudes of action potential and H-reflex were also standardized. Mean H latency was 28.4(${\pm}3.2$) milliseconds. And. the fundamental principles, several factors altering the rate of nerve conduction and clinical application of nerve stimulation techniques were reviewed.

  • PDF