• Title/Summary/Keyword: Neural computing

Search Result 525, Processing Time 0.027 seconds

Advanced Self-organizing Neural Networks with Fuzzy Polynomial Neurons : Analysis and Design

  • Oh, Sung-Kwun;Lee , Dong-Yoon
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.12-17
    • /
    • 2002
  • We propose a new category of neurofuzzy networks- Self-organizing Neural Networks(SONN) with fuzzy polynomial neurons(FPNs) and discuss a comprehensive design methodology supporting their development. Two kinds of SONN architectures, namely a basic SONN and a modified SONN architecture are dicussed. Each of them comes with two types such as the generic and the advanced type. SONN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulation involves a series of synthetic as well as experimental data used across various neurofuzzy systems. A comparative analysis is included as well.

  • PDF

Implementation of back propagation algorithm for wearable devices using FPGA (FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현)

  • Choi, Hyun-Sik
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • Neural networks can be implemented in variety of ways, and specialized chips is being developed for hardware improvement. In order to apply such neural networks to wearable devices, the compactness and the low power operation are essential. In this point of view, a suitable implementation method is a digital circuit design using field programmable gate array (FPGA). To implement this system, the learning algorithm which takes up a large part in neural networks must be implemented within FPGA for better performance. In this paper, a back propagation algorithm among various learning algorithms is implemented using FPGA, and this neural network is verified by OR gate operation. In addition, it is confirmed that this neural network can be used to analyze various users' bio signal measurement results by learning algorithm.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Experimental Studies of Neural Network Control Technique for Nonlinear Systern (신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구)

  • Im, Sun-Bin;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

Privacy-preserving and Communication-efficient Convolutional Neural Network Prediction Framework in Mobile Cloud Computing

  • Bai, Yanan;Feng, Yong;Wu, Wenyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4345-4363
    • /
    • 2021
  • Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.

Design of Multi-Dynamic Neural Network Controller for Improving Transient Performance (과도상태 성능 개선을 위한 다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.344-348
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.332-336
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

Design of an Adaptive Output Feedback Controller for Robot Manipulators Using DNP (DNP을 이용한 로봇 매니퓰레이터의 출력 궤환 적응제어기 설계)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.191-196
    • /
    • 2008
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.454-457
    • /
    • 2009
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF