• Title/Summary/Keyword: Neural adaptation

Search Result 169, Processing Time 0.03 seconds

Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule (퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계)

  • 이순영;장순용
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.603-610
    • /
    • 2000
  • In this paper, the direct and indirect adaptive controller are combined based on the Lyapunov synthesis approach. The Proposed controller is constructed from RBF Neural Network and weighting parameters are adjusted on-line according to some adaptation law. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. In the results, proposed controller has the main advantages of both the direct adaptive controller and the indirect adaptive controller. The effectiveness of the proposed control scheme is demonstrated through simulation results of control for one-link rigid robotics manipulator.

  • PDF

A Study on Function Discrimination for EMG Signals Using Neural Network and Fuzzy Filter (신경회로망과 퍼지필터를 사용한 근전도신호의 기능변별에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.355-364
    • /
    • 1994
  • The most important requirement for the controller of a prosthetic arm is that it has a high fidelity discriminator where the motion control may be performed open loop using EMG signals as a control source. Therefore, it is very effective method to reduce the influence of misclassification of classifier for the total system performance. This paper presents the new function discrimination method which combines MLP classifier and frizzy filter by stages for the requirement. The major advantage of MLP is a consistent learning capability for the easy adaptation to environments. The fuzzy filter uses all informations of MLP outputs and prior EMG activity informations which increase as the experience increases. That property is superior to one which uses maximum output of MLP in view of information amounts and quality. Simulation result shows that proposed method is superior to the probabilistic model, MLP model and the combined model of both in the respect of discrimination quaity.

  • PDF

Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach (신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근)

  • Yoon, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1848-1849
    • /
    • 2006
  • The new robust controller design method is proposed for the flight control systems with model uncertainties. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the "explosion of complexity" problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

  • PDF

Robust Control of the Robotic Systems Using Self Recurrent Wavelet Neural Network via Backstepping Design Technique (벡스테핑 기법 기반 자기 회귀 웨이블릿 신경 회로망을 이용한 로봇 시스템의 강인 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2711-2713
    • /
    • 2005
  • This paper presents the tracking control method of robotic systems with uncertainties using self recurrent wavelet neural network (SRWNN) via the backstepping design technique. The SRWNN is used as the uncertainty observer of the robotic systems. The adaptation laws for weights of the robotic systems are induced from the Lyapunov stability theorem, which are used for on-line controlling robotic systems. Computer simulations of a three-link robot manipulator with uncertainties verify the validity of the proposed SRWNN controller.

  • PDF

Intelligent Gain and Boundary Layer Based Sliding Mode Control for Robotic Systems with Unknown Uncertainties

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2319-2324
    • /
    • 2005
  • This paper proposes a intelligent gain and boundary layer based sliding mode control (SMC) method for robotic systems with unknown model uncertainties. For intelligent gain and boundary layer, we employ the self recurrent wavelet neural network (SRWNN) which has the properties such as a simple structure and fast convergence. In our control structure, the SRWNNs are used for estimating the width of boundary layer, uncertainty bound, and nonlinear terms of robotic systems. The adaptation laws for all parameters of SRWNNs and reconstruction error bounds are derived from the Lyapunov stability theorem, which are used for an on-line control of robotic systems with unknown uncertainties. Accordingly, the proposed method can overcome the chattering phenomena in the control effort and has the robustness regardless of unknown uncertainties. Finally, simulation results for the three-link manipulator, one of the robotic systems, are included to illustrate the effectiveness of the proposed method.

  • PDF

Adaptation of Clustering Method to FNN for Performance Improvement (FNN 성능개선을 위한 클러스터링기법의 적용)

  • 최재호;박춘성;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • In this paper, we proposed effective modeling method to nonlinear complex system. Fuzzy Neural Network(FNN) was used as basic model. FNN was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, we used FNN which was proposed by Yamakawa. The FNN used Simple Inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. This structure has better property than other structure at learning speed and convergence ability. But it has difficulty at definition of membership function. We used Hard c-Mean method to overcome this difficulty. To evaluate proposed method. We applied the proposed method to waste water treatment process. We obtained better performance than conventional model.

  • PDF

Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach (신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.12
    • /
    • pp.518-525
    • /
    • 2006
  • This paper presents the adaptive robust control method for the flight control systems with model uncertainties. The proposed control system can be composed simply by a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the 'explosion of complexity' problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems, and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

Interactive Adaptation of Fuzzy Neural Networks in Voice-Controlled Systems

  • Pulasinghe, Koliya;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.3-42
    • /
    • 2002
  • Fuzzy Neural Network (FNN) is a compulsory element in a voice-controlled machine due to its inherent capability of interpreting imprecise natural language commands. To control such a machine, user's perception of imprecise words is very important because the words' meaning is highly subjective. This paper presents a voice based controller centered on an adaptable FNN to capture the user's perception of imprecise words. Conversational interface of the machine facilitates the learning through interaction. The system consists of a dialog manager (DM), the conversational interface, a Knowledge base, which absorbs user's perception and acts as a replica of human understanding of imprecise words,...

  • PDF

Realtime Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 실시간 진화)

  • Lee, Jae-Gu;Shim, In-Bo;Yoon, Joong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.816-821
    • /
    • 2003
  • Researchers have utilized artificial evolution techniques and learning techniques for studying the interactions between learning and evolution. Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors. We investigate the effects of learning in evolutionary process by comparing the performance of the proposed realtime evolutionary learning method with that of evolutionary method only. Also, we investigate an interactive evolutionary algorithm to overcome the difficulties in evaluating complicated tasks.

  • PDF

Speed Control of Induction Motor Drive using Adaptive FNN Controller (적응 FNN 제어기를 이용한 유도전동기 드라이브의 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for speed control of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions.

  • PDF