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Abstract: This paper proposes a intelligent gain and boundary layer based sliding mode control (SMC) method

for robotic systems with unknown model uncertainties. For intelligent gain and boundary layer, we employ

the self recurrent wavelet neural network (SRWNN) which has the properties such as a simple structure and

fast convergence. In our control structure, the SRWNNs are used for estimating the width of boundary layer,

uncertainty bound, and nonlinear terms of robotic systems. The adaptation laws for all parameters of SRWNNs

and reconstruction error bounds are derived from the Lyapunov stability theorem, which are used for an on-

line control of robotic systems with unknown uncertainties. Accordingly, the proposed method can overcome

the chattering phenomena in the control effort and has the robustness regardless of unknown uncertainties.

Finally, simulation results for the three-link manipulator, one of the robotic systems, are included to illustrate

the effectiveness of the proposed method.

Keywords: Self recurrent wavelet neural network, Sliding mode control, Unknown uncertainty, Intelligent
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1. Introduction

The sliding mode control (SMC) is known as one of

simple and popular techniques for a robust control of

robotic systems with uncertainties and external dis-

turbances due to its simplicity, fast response and good

performance [1]. However, the traditional SMC has

two important drawbacks. First, the bounds of uncer-

tainties and external disturbances of the plant must

be known for solving control problems [2,3]. However,

in real applications, since the parameter variations of

the system are difficult to predict, and the external

disturbances changed according to the environment

are also difficult to know, the switching gain of the

sliding phase in the traditional SMC law cannot be

computed accurately. Second, the traditional SMC

always suffers from chattering control input owing to

its discontinuous switching control input and its de-

lays in the sliding phase [2,3]. The chattering control

input results in low control accuracy and high wear

of moving mechanical parts.

On the other hand, recently wavelet neural network

(WNN), which absorbs the advantages of high res-

olution of wavelets and learning of neural network,

has been proposed to guarantee the fast convergence

and is used for the identification and control of the

nonlinear systems [5, 6]. However, the WNN does

not require prior knowledge about the plant to be

controlled due to its feedforward structure. There-

fore, the WNN cannot adapt rapidly under the cir-

cumstances to change frequently the operating con-

ditions and parameters of dynamics. To overcome

these problems, the self recurrent wavelet neural net-

work (SRWNN), which combines the properties of

attractor dynamics of recurrent neural network and

the fast convergence of WNN, has been proposed and

used for estimating and controlling nonlinear systems

[7]. Since the SRWNN has a mother wavelet layer

composed of self-feedback neurons, it can capture the

past information of the network and adapt rapidly to

sudden changes of the control environment. Due to

these properties, the structure of the SRWNN can be

simpler than that of the WNN.

In this paper, the self recurrent wavelet neural

network based sliding mode control (SRWNNSMC)

method is presented to control robotic systems with

unknown uncertainties. We first introduce the robot

model which the model uncertainties are separated,

then the sliding controller with the intelligent gain

and boundary is designed. In our SRWNNSMC sys-

tem, the bound of the uncertainty assumed to be un-

known is used as the gain of the sliding phase with the

boundary layer. For the intelligent gain and bound-

ary layer, the SRWNNs are used to approximate the

unknown gain and boundary layer in the sliding phase

and the nonlinear term in the robot dynamics. Be-

sides, the acceleration term in the sliding phase is

added to accelerate the convergence of the operat-

ing point. To analyze the SRWNNSMC system and
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to learn weights of the SRWNN, we apply the adap-

tive technique based on the Lyapunov stability the-

ory [8, 9] recently to be used chiefly. Accordingly,

the adaptation laws for learning the weights of the

SRWNN and these for the error compensator are in-

duced out of consideration for the stability, robust-

ness and performance of the SRWNNSMC system.

Finally, we simulate the three-link manipulator, one

of the robotic systems, to show the effectiveness of

the suggested SRWNNSMC system.

2. Problem Formulation
2.1. Model of robot systems with uncertainties

The nominal model of a robot system having n rigid

joints can be expressed in the following Lagrange

form:

M(q)q̈ + C(q, q̇) + G(q) + F (q̇) = τ , (1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity,

and acceleration respectively. M(q) ∈ Rn×n is the

inertia matrix, C(q, q̇) ∈ Rn denotes the Coriolis

and centripetal forces, G(q) ∈ Rn is the gravity vec-

tor, F (q̇) ∈ Rn represents the friction term, and the

control input torque is τ ∈ Rn.

However, for the model uncertainty and external dis-

turbance τd, the actual model of a robot system may

be different from the nominal model (1). Thus, the

actual dynamics of the nominal model (1) can be ex-

pressed as

M̄(q)q̈ + C̄(q, q̇) + Ḡ(q) + F̄ (q̇) + τd = τ , (2)

where M̄(q), C̄(q, q̇), Ḡ(q), and F̄ (q̇) are the ac-

tual values having the uncertainty in the nominal val-

ues M(q), C(q, q̇), G(q), and F (q̇), respectively.

Assumption 1: In this paper, suppose that the

nominal value M(q) is only the known value for a

given robot, but the nominal values C(q, q̇), G(q),

and F (q̇), the actual values M̄(q), C̄(q, q̇), Ḡ(q),

F̄ (q̇), and the external disturbance τd are the un-

known values.

We must express the model uncertainty separately

with the nominal model according to Assumption 1.

The actual robot dynamics (2) can be written in the

following formulation using the nominal model [9]:

M(q)q̈ + C(q, q̇) + G(q) + F (q̇)+Ξ(q, q̇, τ)

= τ , (3)

where

Ξ(q, q̇, τ) ≡−M(q)M̄−1(q){τ − τd − C̄(q, q̇)

−Ḡ(q) − F̄ (q̇)} + {τ − C(q, q̇)

−G(q) − F (q̇)} (4)

denotes the uncertainty of the robot system. The

uncertainty term Ξ(q, q̇, τ) cannot be evaluated di-

rectly by Assumption 1.

2.2. Design of the traditional SMC system

In this section, we discuss the traditional SMC design

method for the robot model (3) with uncertainty and

its problems. The actual model (3) of robot system

with uncertainty can be written as follows:

q̈ =M−1(q){−C(q, q̇) − G(q) − F (q̇) + τ}
+ Λ(q, q̇, τ), (5)

where Λ(q, q̇, τ) ≡ −M−1(q)Ξ(q, q̇, τ) denotes

the uncertainty term. Here, τ is a function of q, q̇

and Qd = (qd, q̇d, q̈d) which denotes the reference

position, velocity, and acceleration. Accordingly,

q̈ =M−1(q){−C(q, q̇) − G(q) − F (q̇) + τ}
+ Λ(q, q̇, Qd), (6)

where the bound of the uncertainty terms Λi(q, q̇, Qd)

is assumed to be given, that is,

|Λi(q, q̇, Qd)| < σi, (7)

where i = 1, 2, · · · , n, σi is a given positive constant.

The objective of SMC is to get the joint position q

to track a reference position qd. To solve this control

problem, in the multi-input case, we define the time-

varying sliding surface vector S(t) as follows:

S(t) = Ė + P1E + P2

∫ t

0

Edτ , (8)

where E = q − qd is the control error, P1 =

diag[p1,i], and P2 = diag[p2,i]. Here p1,i > 0 and

p2,i > 0 are constants, which are given for S(t) = 0;

diag[·] denotes a diagonal matrix. S(t) = 0 means

that the resultant system is stable. If the states are

outside the sliding surface, to drive the states to the

sliding surface, we need the sliding condition as fol-

lows:

ST (t)Ṡ(t) =

n∑
i=1

Si(t)Ṡi(t)

< −
n∑

i=1

µi|Si(t)|, if S(t) 6= 0. (9)

where Si(t) is the i-th component of S(t) and the

constants µi are strictly positive. We take the deriva-

tive of (8), and using (6), obtain

Ṡ(t) = q̈ − q̈d + P1Ė + P2E

= M−1(q){−C(q, q̇) − G(q) − F (q̇) + τ}
+Λ(q, q̇, Qd) − q̈d + P1Ė + P2E, (10)
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Then, the total SMC law is assumed to take the fol-

lowing form:

τ = τr + τc, (11)

where

τr =C(q, q̇) + G(q) + F (q̇)

+M(q)(q̈d − P1Ė − P2E − σ), (12)

τc =−M(q)Lsgn(S(t)) (13)

in which σ = [σi], L = diag[Li]; Li > 0 are con-

stants, and sgn(·) is a sign function. The reaching

control input τr is used to cancel the nonlinear term

and to specify the desired system performance. And

the sliding control input τc is used to keep the con-

trolled system dynamics in the sliding surface and

to guarantee the convergence of the state trajectory.

Substituting (10) into (9), and using (11)∼(13), the

sliding condition can be written as follows:

ST (t)Ṡ(t) ≤ ST (t)[M−1(q){−C(q, q̇) − G(q)

−F (q̇) + τ} + σ − q̈d + P1Ė + P2E]

= −
n∑

i=1

Li|Si(t)|,

so that, letting Li = µi, the sliding condition (9) is

satisfied throughout the whole control period and the

stability of controlled system is guaranteed. But the

traditional SMC method has the following problems.

Problem 1: In real robot system, since the parame-

ter variations (σi), that is, the uncertainty are diffi-

cult to measure, and the exact value of the external

disturbance is also difficult to know in advance, we

cannot use the traditional SMC technique for the ro-

bust control of robotic systems with unknown uncer-

tainties and disturbances.

Problem 2: In the traditional SMC technique, the

sign function (sgn(·)) of sliding control input τc will

result in chattering phenomena, exciting unstable sys-

tem dynamics and easy damage of mechanism, in the

control efforts. For attenuating the chattering con-

trol input, the boundary layer method [4] is used

commonly. Indeed, the control signal is smoother

than the original one without using a boundary layer.

However, the boundary layer method has a drawback

that the width of boundary layer is difficult to choose

optimally. A thin boundary layer for obtaining ex-

treme tracking accuracy has risks exciting a high-

frequency control input and chattering phenomena.

And also, a thick boundary layer results in the large

steady-state error and does not ensure the conver-

gence of the state trajectory of the system to the

sliding surface.

3. Robust SRWNN based SMC System
for Robotic Systems

In order to solving Problems 1 and 2 of the traditional

SMC technique, we now introduce the design method

of SMC system based on the SRWNN for robotic sys-

tems.

3.1. SRWNN structure

A schematic diagram of the SRWNN structure is

shown in [7], which has Ni inputs, one output, and

Ni × Nw mother wavelets. The SRWNN structure

consists of four layers: a input layer, a mother wavelet

layer, a product layer, and a output layer. Each

node of a mother wavelet layer has a mother wavelet

and a self-feedback loop. In this paper, we select

the first derivative of a Gaussian function, φ(x) =

−xexp(− 1
2
x2) which has the universal approximation

property [6] as a mother wavelet function. The nodes

in a product layer are given by the product of the

mother wavelets as follows:

Φj(x) =

Ni∏

k=1

φ(zjk), with zjk =
ujk −mjk

djk
,

where, mjk and djk are the translation factor and

the dilation factor of the wavelets, respectively. The

subscript jk indicates the k-th input term of the j-th

wavelet. In addition, the inputs ujk of the wavelet

nodes can be denoted by

ujk = xk + φjkz−1 · θjk, (14)

where, θjk denotes the weight of the self-feedback

loop, and z−1 is a time delay. The input of mother

wavelet layer contains the memory term φjkz−1,

which can store the past information of the network.

That is, the current dynamics of the system is con-

served for the next sample step. Thus, even if the

SRWNN has less mother wavelets than the WNN, the

SRWNN can attract nicely the system with complex

dynamics. Here, θjk is a factor to represent the rate of

information storage. These aspects are the apparent

dissimilar point between the WNN and the SRWNN.

And also, the SRWNN is a generalization system of

the WNN because the SRWNN structure is the same

as the WNN structure when θjk = 0.

The SRWNN output is a linear combination of con-

sequences obtained from the output of the product

layer. In addition, the output node accepts directly

input values from the input layer. Therefore, the SR-

WNN output y is composed by self-recurrent wavelets

and parameters as follows:

y =

Nw∑
j=1

wjΦj(x) +

Ni∑

k=1

akxk, (15)

where, wj is the connection weight between product

nodes and output nodes, and ak is the connection
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weight between the input nodes and the output node.

By using the direct term, the SRWNN has a number

of advantages such as a direct linear feedthrough net-

work, including initialization of network parameters

based on process knowledge and enhanced extrapola-

tion outside of examples the learning data sets [10].

In this paper, five weights ak, mjk, djk, θjk, and wj

of the SRWNN are trained by the adaptation laws

induced from the Lyapunov stability in the following

section.

3.2. SRWNN based SMC system

For the SRWNNSMC system design, we reformulate

the derivative (10) of the sliding surface as

Ṡ(t) = M−1(q){−C(q, q̇) − G(q) − F (q̇) + τ}
+Λ(q, q̇, Qd) − q̈d + P1Ė + P2E

= M−1(q)τ + Ω(q, q̇) + Λ(q, q̇, Qd)

−q̈d + P1Ė + P2E, (16)

where

Ω(q, q̇) = M−1(q){−C(q, q̇) − G(q) − F (q̇)}
(17)

denotes the nonlinear term of the robotic system, and

the bound of the uncertainty is assumed as a un-

known positive constant. In our control structure,

the SRWNN system Ω̂(q, q̇) will be employed to ap-

proximate the nonlinear term Ω(q, q̇) to a sufficient

degree of accuracy. Thus, the nonlinear term Ω(q, q̇)

can be described by the optimal SRWNN plus a re-

construction error vector ε1 as follows:

Ω(x) = Ω̂(x|Â) + [Ω∗(x|A∗)− Ω̂(x|Â)] + ε1,

(18)

where x = (q, q̇), Â = [Âi]; Âi are the collections of

the estimated weighting parameters of the SRWNN

defined in Section 3.1.and A∗ is the optimal weight-

ing vector that achieves the minimum reconstruction

error. Then, taking the Taylor series expansion of

Ω∗(x|A∗) around Â, it can be obtained that

Ω∗(x|A∗)− Ω̂(x|Â)

= ÃT

[
∂Ω̂(x|Â)

∂Â

]
+ H1(A

∗, Â), (19)

where Ã = A∗ − Â, and H1 is a high-order term.

Substituting (19) into (18), we obtain

Ω(x) = Ω̂(x|Â) + ÃT

[
∂Ω̂(x|Â)

∂Â

]
+ α, (20)

where each magnitude of element of the vector

α = H1 + ε1 is assumed to be bounded by |αi| ≤ δi

(i = 1, 2, · · · , n). Based on the facts that the non-

linear term Ω(q, q̇) is approximated by the adaptive

SRWNN system, we propose the reaching control in-

put τr as follows:

τr = M(q){−Ω̂(x|Â) + q̈d − P1Ė − P2E} + τe1,

(21)

where τe1 = −M(q)δ̂ in which δ̂ is the estimated

vector of δ is designed to compensate the approxi-

mation error ε1 and the high-order term H1 of the

SRWNN.

Then, the sliding control input τc is presented to

guarantee the convergence of the states trajectory and

to eliminate the chattering phenomenon as follows:

τc = −M(q) (Υ + K) S(t),

where Υ = diag[σi/(|Si(t)|+Ri)]; σi/[|Si(t)|+Ri] > 0

(i = 1, 2, · · · , n). And also, Ri is defined as the

width of the boundary layer and is the small pos-

itive constant. The second term −M(q)KS(t) is

used to accelerate the convergence of the operating

point; K = diag[Ki] and Ki > 0 is a constant. For

the unknown uncertainty bound and the width of the

boundary layer, we adopt the SRWNN to estimate

the diagonal terms of Υ. Thus, similar to (18) ∼
(20), Υ is

Υ = Υ∗(S|B∗) + ε2

= Υ̂(S|B̂) + [Υ∗(S|B∗)− Υ̂(S|B̂)] + ε2

= Υ̂(S|B̂) + B̃T

[
∂Υ̂(S|B̂)

∂B̂

]
+ H2(B

∗, B̂) + ε2

= Υ̂(S|B̂) + B̃T

[
∂Υ̂(S|B̂)

∂B̂

]
+ β, (22)

where B̃ = B∗ − B̂, each element of the diagonal

matrix β = H2 + ε2 is assumed to be bounded by

|βi| ≤ ζi; H2 and ε2 are a high-order term and

a reconstruction error of the SRWNN, respectively.

Therefore, the sliding control law is redefined as

τc = −M(q)
(
Υ̂(S|B̂) + ζ̂ + K

)
S(t), (23)

where Υ̂ = diag[Υ̂i], the second term −M(q)ζ̂S(t)

is added to compensate the approximation error ε2

and the high-order term H2 of the SRWNN; ζ̂ =

diag[ζ̂i] is the estimated diagonal matrix of ζ. Ac-

cordingly, from (21) and (23), the total control input

is proposed as follows:

τ = τr + τc

= M(q)
{

−Ω̂(x|Â) − δ̂ + q̈d − P1Ė − P2E

−
(
Υ̂(S|B̂) + ζ̂ + K

)
S(t)

}
. (24)
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Theorem 1: Assume that the robot system (6)

with unknown model uncertainty is controlled by the

SRWNNSMC laws (24). If the adjustable parameters

of the SRWNN and the error compensation vectors

are tuned by the following adaptation rules:

˙̂
Ai = λ1,i

[
∂Ω̂i(xi|Âi)

∂Âi

]
|Si(t)|, (25)

˙̂
Bi = λ2,i

[
∂Υ̂i(Si|B̂i)

∂B̂i

]
S2

i (t), (26)

˙̂
δi(t) = λ3,i|Si(t)|, (27)

˙̂
ζi(t) = λ4,iS

2
i (t), (28)

where i = 1, 2, · · · , n, λ1,i, λ2,i, λ3,i, and λ4,i are

positive tuning gains, then the asymptotic stability

of the controlled system can be guaranteed.

Remark 1: In Theorem 1,
[
∂Ω̂i(xi|Âi)/∂Âi

]
and[

∂Υ̂i(Si|B̂i)/∂B̂i

]
can be computed using the back-

propagation algorithm and are shown in [7].

Remark 2: Since the sign function of the sliding con-

trol input in the traditional SMC technique is substi-

tuted by the SRWNN, there are no chattering phe-

nomena in the control efforts of the SRWNNSMC sys-

tem.

4. Computer Simulation
In this section, to illustrate the effectiveness of the

suggested SRWNNSMC system, the three-link ma-

nipulator with unknown uncertainties, one of the

robotic systems, is simulated using a fourth-order

Runge-Kutta algorithm with a step size of 0.01 s.

The matrices M(q), C(q, q̇), and G(q) in the dynam-

ics (1) of the three-link manipulator are given by

[9]. In this simulation, the initial positions are set

to q1(0) = q2(0) = q3(0) = 0 and the link masses

mis and the link lengths ais are assumed to be un-

certain. Table 1 shows the parameters of the robot

system used in this simulation. In Table 1, we assume

that the nominal values only are known. The param-

eters of the proposed control system are given in the

following:

P1 = diag[60 60 100]

P2 = diag[0.5 6 0.1]

K = diag[80 60 140]

λ1 = diag[0.002 0.002 0.002]

λ2 = diag[0.0001 0.00001 0.00001]

λ3 = diag[0.2 0.2 1.0]

λ4 = diag[0.1 0.001 0.08].

In addition, the external disturbance τd = [τd1 τd1

τd1]
T given by

τd1 = 0.4sin(2t)

τd2 = 0.3cos(2t)

τd3 = 0.5sin(3t)

is assumed to influence the robot as in (2). The de-

sired trajectory is considered as

qd1(t) = 0.3cos
(
1.5t +

π

3

)

qd2(t) = 0.1cos(1.5t)

qd3(t) = 0.2cos(1.5t).

To show the simplicity of the SRWNNs in the SR-

WNNSMC system, each SRWNN consists of two in-

put, two mother wavelet, one product node, one out-

put. The initial values of the SRWNNs parameters

ak, mjk, djk, and wj are given randomly in the range

of [-1 1], but djk > 0. And also, the initial values

of θjk are given by 0. That is, there are no feedback

units initially. The inaccurate initial tuning param-

eters of the SRWNNs are trained optimally by the

online parameter tuning methodology. The tracking

results of the SRWNNSMC system shown in Fig. 1

indicate that the suggested method can overcome un-

known model uncertainties resulting from the robot

dynamics and external disturbances. Figs. 2 and 3

show the tracking errors and control inputs of joint

1, 2, and 3, respectively. In Fig. 2, we can see that

the tracking errors which occur at the starting point

drop quickly in less than a few seconds. Moreover,

in Fig. 3, the chattering phenomena, the important

problem of the traditional SMC, disappears since the

SRWNNSMC system possesses the advantages of the

intelligent boundary layer via the powerful learning

capability of SRWNNs.

5. Conclusion
The intelligent gain and boundary layer based SMC

method for robotic systems with unknown uncertain-

ties has been developed. The SRWNNs having simple

structures have been used to approximate the non-

linear terms in the robotic model, the width of the

boundary layer and model uncertainty bound used as

a switching gain in the sliding phase. The adaptation

laws for training weights of SRWNNs and these for

error compensators have been induced from the Lya-

punov stability theory, which have been used to guar-

antee the asymptotic stability of the proposed con-

troller. And also, the acceleration term in the sliding

phase has been added to accelerate the convergence to

the inside of the sliding surface. Finally, a simulation

has been performed to show that the SRWNNSMC
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Table 1. Simulation parameters

Mass (mi, Kg) Link (ai, m) Moment of Inertia

Nominal Actual Nominal Actual (Ioi, Kgm2)

Joint 1 1.0 1.5 0.5 0.6 43.33×10−3

Joint 2 0.7 2.0 0.4 0.6 25.08×10−3

Joint 3 1.4 3.0 0.3 0.5 32.67×10−3

system could be applied for robotic systems without

the knowledge of the uncertainty bound and eliminate

the chattering phenomenon in the control effort.
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Fig. 1. Tracking results. (solid line: actual output,

dotted line: desired trajectory) (a) Joint 1 (b)

Joint 2 (c) Joint 3
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Fig. 2. Tracking errors. (solid line: Joint 1, dotted

line: Joint 2, dash-dotted line: Joint 3)
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Fig. 3. Control inputs without the chattering phe-

nomena.
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