• 제목/요약/키워드: Neural Signal

검색결과 1,124건 처리시간 0.035초

퍼지-뉴럴 제어기를 이용한 유도전동기 속도제어 (A Study on Induction Motor Speed Control Using Fuzzy-Neural Network)

  • 김세찬;김학성;류홍제;원충연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.251-254
    • /
    • 1995
  • The Fuzzy-Neural Controller is constructed to resolve some dificulties taking place in decision of membership functions, input and output gains and an inferenced method for desinging fuzzy logic controller. In addition Neural network emulator is used to emulate induction motor forward dynamics and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. A back propagation algorithm is used to train fuzzy-neural controller and emulator. The experimental results show that this control system can provide good dynamical responses.

  • PDF

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

초음파 검사 기반의 용접결함 분류성능 개선에 관한 연구 (Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws)

  • 김재열;윤성운;김창현;송경석;양동조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.287-292
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we confirmed advantages/disadvantages of four algorithms and identified application methods of few algorithms.

  • PDF

신경회로망을 이용한 순 티타늄판재의 음향이방성 평가 (Acoustical Anisotropy Evaluation of Pure Titanium plate Using Neural Network)

  • 박희동;윤인식;이원
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1103-1109
    • /
    • 2011
  • This research quantitatively confirmed an acoustical anisotropy that exists in a pure titanium plate from the signal of ultrasonic flow detection and suggested a new way to evaluate the acoustical anisotropy by inputting acquired characteristic of ultrasound signal into the neutral network. Using the fact with the suggested method that the characteristic of ultrasound signal is shown differently depending on the pure titanium plate's rolling direction, the neural network was constructed by extracting the characteristic that can decide each direction of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ with waveform analysis program. As a result of inputting the characteristic of ultrasound signal acquired from a random rolling direction into the neural network that was built like this, it showed a pattern recognition rate higher than 95% on directions of $0^{\circ}$, $45^{\circ}$, $90^{\circ}$.

지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측 (Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks)

  • 최한고
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.139-147
    • /
    • 2003
  • 동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(CRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 CRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio

  • Uppala, Appala Raju;Narasimhulu C, Venkata;Prasad K, Satya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2128-2147
    • /
    • 2021
  • Cognitive radio systems are being implemented recently to tackle spectrum underutilization problems and aid efficient data traffic. Spectrum sensing is the crucial step in cognitive applications in which cognitive user detects the presence of primary user (PU) in a particular channel thereby switching to another channel for continuous transmission. In cognitive radio systems, the capacity to precisely identify the primary user's signal is essential to secondary user so as to use idle licensed spectrum. Based on the inherent capability, a new spectrum sensing technique is proposed in this paper to identify all types of primary user signals in a cognitive radio condition. Hence, a spectrum sensing algorithm using improved convolutional neural network and long short-term memory (CNN-LSTM) is presented. The principle used in our approach is simulated annealing that discovers reasonable number of neurons for each layer of a completely associated deep neural network to tackle the streamlining issue. The probability of detection is considered as the determining parameter to find the efficiency of the proposed algorithm. Experiments are carried under different signal to noise ratio to indicate better performance of the proposed algorithm. The PU signal will have an associated modulation format and hence identifying the presence of a modulation format itself establishes the presence of PU signal.

A Dual-scale Network with Spatial-temporal Attention for 12-lead ECG Classification

  • Shuo Xiao;Yiting Xu;Chaogang Tang;Zhenzhen Huang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2361-2376
    • /
    • 2023
  • The electrocardiogram (ECG) signal is commonly used to screen and diagnose cardiovascular diseases. In recent years, deep neural networks have been regarded as an effective way for automatic ECG disease diagnosis. The convolutional neural network is widely used for ECG signal extraction because it can obtain different levels of information. However, most previous studies adopt single scale convolution filters to extract ECG signal features, ignoring the complementarity between ECG signal features of different scales. In the paper, we propose a dual-scale network with convolution filters of different sizes for 12-lead ECG classification. Our model can extract and fuse ECG signal features of different scales. In addition, different spatial and time periods of the feature map obtained from the 12-lead ECG may have different contributions to ECG classification. Therefore, we add a spatial-temporal attention to each scale sub-network to emphasize the representative local spatial and temporal features. Our approach is evaluated on PTB-XL dataset and achieves 0.9307, 0.8152, and 89.11 on macro-averaged ROC-AUC score, a maximum F1 score, and mean accuracy, respectively. The experiment results have proven that our approach outperforms the baselines.

비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리 (Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement)

  • 윤원열;권남규
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.

원통연삭시 휠속도 변화의 패턴인식을 이용한 채터감시에 관한 연구 (A Study on the Monitoring of Chatter Vibration Using Pattern Recognition in the Plunge Grinding)

  • 이종열;송지복;곽재섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.28-32
    • /
    • 1995
  • Bacause the chatter vibration is a main factor to damage on the quality and integrity, The cure is required peticurity in cykinderical plunge grinding. The chatter vibration relatied with wheel speed, workpiece and infeed rate. Therefore, we expressed more credible normal signal and chatter signal Pattern in accrdiance with wheel speed and acquired RMS signal of the accelerrometer. In thos study, after finding the chatter pattern, we applied two parameters, standard deviation and Kurtosis, to Neural Network.

  • PDF