• Title/Summary/Keyword: Neural Networks Theory

Search Result 166, Processing Time 0.023 seconds

Object Recognition Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론 시스템을 이용한 물체인식)

  • 김형근;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF

Analytical nonlocal elasticity solution and ANN approximate for free vibration response of layered carbon nanotube reinforced composite beams

  • Emrah Madenci;Saban Gulcu;Kada Draiche
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.251-263
    • /
    • 2024
  • This article investigates the free vibration behavior of carbon nanotube reinforced composite (CNTRC) beams embedded using variational analytical methods and artificial neural networks (ANN). The material properties of layered functionally graded CNTRC (FG-CNTRC) beams are estimated using nonlocal parameters modified power-law with different types of CNT distributions through the thickness direction of the beam. Adopting Eringen's nonlocal elasticity theory to capture the small size effects, the nonlocal governing equations are derived and solved using the analytical method. And also, the problem was analyzed using the ANN method. The architecture of the proposed ANN model is 3-9-1. In the experiments, we used 112 different data to predict the natural frequency using ANN. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion as well as the boundary conditions of the beam are derived using Hamilton's principle. The classical beam theory is used to formulate a governing equation for predicting the free vibration of laminated CNTRC beams. According to the experimental results, the prediction ability of the ANN model is very good and the natural frequency can be predicted in ANN without attempting any experiments.

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

Automated Structural Design System Using Fuzzy Theory and Neural Network

  • Lee, Joon-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • This paper describes an automated computer-aided engineering (CAE) system for three-dimensional structures. An automatic finite element mesh-generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code, and a commercial solid modeler. The system allows a geometry model of interest to be automatically converted to different FE models, depending on the physical phenomena of the structures to be analyzed, i.e., electrostatic analysis, stress analysis, modal analysis, and so on. Also, with the aid of multilayer neural networks, the present system allows us to obtain automatically a design window in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed CAE system is successfully applied to evaluate an electrostatic micromachines.

Extensions of Knowledge-Based Artificial Neural Networks for the Theory Refinements (영역이론정련을 위한 지식기반신경망의 확장)

  • Shim, Dong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.18-25
    • /
    • 2001
  • KBANN (knowledge-based artificial neural network) combining the analytical learning and the inductive learning has been shown to be more effective than other machine learning models. However KBANN doesn't have the theory refinement ability because the topology of network can't be altered dynamically. Although TopGen was proposed to extend the ability of KABNN in this respect, it also had some defects. The algorithms which could solve this TopGen's defects, enabling the refinement of theory, by extending KBANN, are designed.

  • PDF

Consciousness, Cognition and Neural Networks in the Brain: Advances and Perspectives in Neuroscience

  • Muhammad Saleem;Muhammad Hamid
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • This article reviews recent advances and perspectives in neuroscience related to consciousness, cognition, and neural networks in the brain. The neural mechanisms underlying cognitive processes, such as perception, attention, memory, and decision-making, are explored. The article also examines how these processes give rise to our experience of consciousness. The implications of these findings for our understanding of the brain and its functions are presented, as well as potential applications of this knowledge in fields such as medicine, psychology, and artificial intelligence. Additionally, the article explores the concept of a quantum viewpoint concerning consciousness, cognition, and creativity and how incorporating DNA as a key element could reconcile classical and quantum perspectives on human behaviour, consciousness, and cognition, as explained by genomic psychological theory. Furthermore, the article explains how the human brain processes external stimuli through the sensory nervous system and how it can be simulated using an artificial neural network (ANN) consisting of one input layer, multiple hidden layers, and an output layer. The law of learning is also discussed, explaining how ANNs work and how the modification of weight values affects the output and input values. The article concludes with a discussion of future research directions in this field, highlighting the potential for further discoveries and advancements in our understanding of the brain and its functions.

Application of artificial neural networks to a double receding contact problem with a rigid stamp

  • Cakiroglu, Erdogan;Comez, Isa;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.205-220
    • /
    • 2005
  • This paper presents the possibilities of adapting artificial neural networks (ANNs) to predict the dimensionless parameters related to the maximum contact pressures of an elasticity problem. The plane symmetric double receding contact problem for a rigid stamp and two elastic strips having different elastic constants and heights is considered. The external load is applied to the upper elastic strip by means of a rigid stamp and the lower elastic strip is bonded to a rigid support. The problem is solved under the assumptions that the contact between two elastic strips also between the rigid stamp and the upper elastic strip are frictionless, the effect of gravity force is neglected and only compressive normal tractions can be transmitted through the interfaces. A three layered ANN with backpropagation (BP) algorithm is utilized for prediction of the dimensionless parameters related to the maximum contact pressures. Training and testing patterns are formed by using the theory of elasticity with integral transformation technique. ANN predictions and theoretical solutions are compared and seen that ANN predictions are quite close to the theoretical solutions. It is demonstrated that ANNs is a suitable numerical tool and if properly used, can reduce time consumed.

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM

  • Madenci, Emrah;Gulcu, Saban
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.633-642
    • /
    • 2020
  • Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.

The Recognition of Printed Chinese Characters using Probabilistic VQ Networks and hierarchical Structure (확률적 VQ 네트워크와 계층적 구조를 이용한 인쇄체 한자 인식)

  • Lee, Jang-Hoon;Shon, Young-Woo;Namkung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1881-1892
    • /
    • 1997
  • This paper proposes the method for recognition of printed chinese characters by probabilistic VQ networks and multi-stage recognizer has hierarchical structure. We use modular neural networks, because it is difficult to construct a large-scale neural network. Problems in this procedure are replaced by probabilistic neural network model. And, Confused Characters which have significant ratio of miss-classification are reclassified using the entropy theory. The experimental object consists of 4,619 chinese characters within the KSC5601 code except the same shape but different code. We have 99.33% recognition rate to the training data, and 92.83% to the test data. And, the recognition speed of system is 4-5 characters per second. Then, these results demonstrate the usefulness of our work.

  • PDF