• Title/Summary/Keyword: Neural Networks Theory

Search Result 166, Processing Time 0.022 seconds

Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique (백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF

A Study on Mix Design Model of High Strength Concrete using Neural Networks (신경망을 이용한 고강도 콘크리트 배합설계모델에 관한 연구)

  • Lee, Yu-Jin;Lee, Sun-Kwan;Kim, Yeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.253-254
    • /
    • 2012
  • The purpose of this study is to suggest and verify high-strength concrete mix design model applying neural network theory, in order to minimize effort and time wasted by using trial and error method utill now. There are 7 input and 2 output to predict mix design. 40 data of mix design were learned with back-propagation algorithm. Then they are repeatedly learned back-propagation in neural network theory. Also, to verify predicted model, we analyzed and compared value predicted from 60MPa mix design with value measured by actual compressive strength test.

  • PDF

GLOBAL EXPONENTIAL STABILITY OF BAM FUZZY CELLULAR NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND IMPULSES

  • Li, Kelin;Zhang, Liping
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.211-225
    • /
    • 2011
  • In this paper, a class of bi-directional associative memory (BAM) fuzzy cellular neural networks with distributed delays and impulses is formulated and investigated. By employing an integro-differential inequality with impulsive initial conditions and the topological degree theory, some sufficient conditions ensuring the existence and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on the delay kernel functions and system parameters. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo;Hong, Bum Il
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.729-738
    • /
    • 2013
  • In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY OF A PERIODIC SOLUTION TO DISCRETE-TIME COHEN-GROSSBERG BAM NEURAL NETWORKS WITH DELAYS

  • Zhang, Zhengqiu;Wang, Liping
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.727-747
    • /
    • 2011
  • By employing coincidence degree theory and using Halanay-type inequality technique, a sufficient condition is given to guarantee the existence and global exponential stability of periodic solutions for the two-dimensional discrete-time Cohen-Grossberg BAM neural networks. Compared with the results in existing papers, in our result on the existence of periodic solution, the boundedness conditions on the activation are replaced with global Lipschitz conditions. In our result on the existence and global exponential stability of periodic solution, the assumptions in existing papers that the value of activation functions at zero is zero are removed.

Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping (신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어)

  • Lee, Taeyoung;Kim, Youdan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Disaggregation Approach of the Pan Evaporation using SVM-NNM (SVM-NNM을 이용한 증발접시 증발량자료의 분해기법)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1560-1563
    • /
    • 2010
  • The goal of this research is to apply the neural networks model for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks model consists of support vector machine neural networks model (SVM-NNM). The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks model, it is composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of SVM-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF