Paul Churchland(1989) suggests the theory of representation from the results of cognitive biology and connectionist AI studies. According to the theory, our representations of the diverse phenomena in the world can be represented as the positions of phase state spaces with the actions of the neurons or of the assembly of neurons. He insists connectionist AI neural networks can have the semantical category systems to recognize the world. But Fodor and Lepore(1996) don't look the perspective bright. From their points of view, the Churchland's theory of representation stands on the base of Quine's holism, and the network semantics cannot explain how the criteria of semantical content similarity could be possible, and so cannot the theory. This thesis aims to excavate which one is the better between the perspective of the theory and the one of Fodor and Lepore's. From my understandings of state space theory of representation, artificial nets can coordinates the criteria of contents similarity by the learning algorithm. On the basis of these, I can see that Fodor and Lepore's points cannot penetrate the Churchlands' theory. From the view point of the theory, we can see how the future's artificial systems can have the conceptual systems recognizing the world. Therefore we can have the perspectives what cognitive scientists have to focus on.
The goal of this research is to develop and apply the generalized regression neural networks model(GRNNM) embedding genetic algorithm(GA) for the estimation and calculation of the pan evaporation(PE), which is missed or ungaged and of the alfalfa reference evapotranspiration ($ET_r$), which is not measured in South Korea. Since the observed data of the alfalfa 37. using Iysimeter have not been measured for a long time in South Korea, the Penman-Monteith(PM) method is used to estimate the observed alfalfa $ET_r$. In this research, we develop the COMBINE-GRNNM-GA(Type-1) model for the calculation of the optimal PE and the alfalfa $ET_r$. The suggested COMBINE-GRNNM-GA(Type-1) model is evaluated through training, testing, and reproduction processes. The COMBINE-GRNNM-GA(Type-1) model can evaluate the suggested climatic variables and also construct the reliable data for the PE and the alfalfa $ET_r$. We think that the constructive data could be used as the reference data for irrigation and drainage networks system in South Korea.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.5
/
pp.110-116
/
2008
This paper presents a new postprocessing method to eliminate the false minutiae, that caused by the skelectonization of fingerprint image, and an image compression method using Isometric Self Organizing Map(ISOSOM). Since the SOM has simple structure, fast encoding time, and relatively good classification characteristics, many image processing areas adopt this such as image compression and pattern classification, etc. But, the SOM shows limited performances in pattern classification because of it's single layer structure. To maximize the performance of the pattern classification with small code book, we a lied the Isometric SOM with the isometry of the fractal theory. The proposed Isometric SOM postprocessing and compression algorithm of fingerprint image showed good performances in the elimination of false minutiae and the image compression simultaneously.
The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. subject gazed the monochrome or the unique color, which was tailed target rotor. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling for the target color presented, the estimation of the unique color was cai\ulcornerlied out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law, The color difference saturated In the increase of area of background with the ratio more than 2:1.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.261-265
/
2002
The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. Subject gazed the monochrome or the unique color, which was called target color. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling fer the target color presented, the estimation of the unique color was carried out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law. The color difference saturated in the increase of area of background with the ratio more than 2:1.
Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.
Journal of the Korea Institute of Information and Communication Engineering
/
v.5
no.4
/
pp.730-737
/
2001
In this paper, an stabilization control method using adaptive neuro-fuzzy controller(ANFC) is proposed for modeling of nonlinear complex systems. The proposed adaptive neuro-fuzzy controller implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks from input and output data of processes. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.
Journal of Information Science Theory and Practice
/
v.12
no.2
/
pp.64-78
/
2024
Sentiment analysis is one of the promising approaches for developing a point of interest (POI) recommendation system. It uses natural language processing techniques that deploy expert insights from user-generated content such as reviews and feedback. By applying sentiment polarities (positive, negative, or neutral) associated with each POI, the recommendation system can suggest the most suitable POIs for specific users. The proposed study combines two models for POI recommendation. The first model uses bidirectional long short-term memory (BiLSTM) to predict sentiments and is trained on an election dataset. It is observed that the proposed model outperforms existing models in terms of accuracy (99.52%), precision (99.53%), recall (99.51%), and F1-score (99.52%). Then, this model is used on the Foursquare dataset to predict the class labels. Following this, user and POI embeddings are generated. The next model recommends the top POIs and corresponding coordinates to the user using the LSTM model. Filtered user interest and locations are used to recommend POIs from the Foursquare dataset. The results of our proposed model for the POI recommendation system using sentiment analysis are compared to several state-of-the-art approaches and are found quite affirmative regarding recall (48.5%) and precision (85%). The proposed system can be used for trip advice, group recommendations, and interesting place recommendations to specific users.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.3
/
pp.202-209
/
2002
This paper deals with simplification of classification rules for data mining and rule bases for control systems. Datamining that extracts useful information from such a large amount of data is one of important issues. There are various ways in classification methodologies for data mining such as the decision trees and neural networks, but the result should be explicit and understandable and the classification rules be short and clear. The rough sets theory is an effective technique in extracting knowledge from incomplete and inconsistent data and provides a good solution for classification and approximation by using various attributes effectively This paper investigates granularity of knowledge for reasoning of uncertain concopts by using rough set approximations and uses a hierarchical classification structure that is more effective technique for classification by applying core to upper level. The proposed classification methodology makes analysis of an information system eary and generates minimal classification rules.
Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.