• Title/Summary/Keyword: Neural Networks Theory

Search Result 166, Processing Time 0.028 seconds

Korean Stock Price Index and Macroeconomic Forces (우리나라 증권시장과 거시경제변수 : ANN와 VECM의 설명력 비교)

  • Jung, Sung-Chang;Lee, Timothy H.
    • The Korean Journal of Financial Management
    • /
    • v.19 no.2
    • /
    • pp.211-231
    • /
    • 2002
  • 본 연구의 목적은 VECM(Vector Error Correction Model)과 인공지능모형(Artificial Neural Networks)을 이용하여 우리나라 증권시장과 거시경제 변수들과의 장기적 관계에 대한 설명력을 비교해보고자 함에 있다. VECM이 APT(Arbitrage Pricing Theory)에 기초를 둔 선형동학모형이라고 한다면, 인공지능모형은 비모수적 비선형모형이라는 점에서, 두 방법론의 분석결과를 직접 비판하는 것은 의미있는 연구라고 할 수 있다. 인공지능모형을 주로 활용하는 선행연구들에 의하면, 증권시장은 시장의 특이패턴들로 인해 계량경제학적 접근인 선형 모형보다는 인공지능모형을 통해 증권시장의 움직임을 설명하고 예측하는 것이 더 바람직할 수도 있다는 것이다. 따라서, 본 연구에서는 VECM분석에서 자료의 안정성을 검증하고, 공적분 백터를 발견한 이후, 장기적 균형관계의 실증적 분석을 하였다. 그리고, 인공지능모형에서는 delta rule과 Sigmoid 함수를 이용한 GRNN(General Regression Neural Net)과 Back-Propagation등의 방법들을 활용하였다. 이러한 분석결과, Back-Propagation 모형이 다른 모든 모형들보다도 더 우수한 설명력을 보여주고 있었다. 이러한 결과들은 인공지능모형이 동태적인 선형 모형보다도 더 우수한 설명력을 제공할 수 있는 가능성을 보여주고 있었다.

  • PDF

Optimal Design of Water Jet Nozzles Utilizing Independence Design Axiom (독립공리 설계기법을 이용한 LCD 세정노즐의 최적설계)

  • Shin, Hyun-Suk;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1240-1247
    • /
    • 2003
  • Water jet nozzle for LCD has been used as a wet cleaning process in many industries. It is necessary for the nozzle to consider cleaning effect and flux. In this paper, we applied the bubble dynamic theory(Rayleight-Plesset equation) to improve the cleaning efficiency. Generally, Rayleigh-Plesset equations for cavitation bubbles are used in analyzing computer simulation for caviting flows. Burst of bubbles causes potential energies and we can use these energies to remove organic and inorganic compounds on the LCD. Therefore, it is necessary to analyze the bubble generations and axiomatic design by computational fluid dynamics(CFD). By comparing the weight matrix of neural networks to the design matrix of axiomatic design, we propose methods to verify designs objectively. The optimal solution could be deduced by the regression analysis using the design parameters.

  • PDF

Design of an Intelligent Integrated Control System Using Neural Network (뉴럴 네트워크를 이용한 지능형 통합 제어 시스템 설계)

  • 정동연;이우송;안인모;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.217-222
    • /
    • 2001
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for automatic test and assembling in S company.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for similar model of fifth cell among the twelve cell for automatic test and assemblig in S company.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;이영진;지호성;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.96-101
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for automatic test and assembling in S company.

  • PDF

An Analysis Method of Strange Attractor for the Feature Extraction (음성 특징 추출을 위한 스트레인지 어트랙터의 분석 방법)

  • Kim, Tae-Sik
    • Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • In the area of speech processing, raw signals used to be presented into 2D format. However, such kind of presentation methods have limitation to extract characteristics from the signal because of the presentation method. Generally, not much information can be detected from the 2D signal. Strange attractor in the field of chaos theory provides a 3D presentation method. In the area of recognition problem, signal presentation method is very important because good features can be detected from a good presentation. This paper discusses a new feature extraction method that extracts features from a cycle of the strange attractor. A neural network is used to check whether the method extracts suitable features or not. The result shows very good points that can be applied to some areas of signal processing.

  • PDF

Information-Based Hybrid Modeling Framework on the Systematic use of Artificial Neural-Networks (구조모델 개선을 위한 정보기반 하이브리드 모델링 기법)

  • Kim, JunHee;Jamshid, Ghaboussi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.363-372
    • /
    • 2012
  • In this study, a new information-based hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections.

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.285-288
    • /
    • 2005
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

  • PDF

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.