• 제목/요약/키워드: Neural Network Modeling

검색결과 749건 처리시간 0.03초

자코비안을 이용한 최적의 신경망 제어기 설계 (Optimal Neural Network Controller Design using Jacobian)

  • 임윤규;정병묵;조지승
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.85-93
    • /
    • 2003
  • Generally, it is very difficult to get a modeling equation because multi-variable system has coupling relations between its inputs and outputs. To design an optimal controller without the modeling equation, this paper proposes a neural-network (NN) controller being learned by Jacobian matrix. Another major characteristic is that the controller consists of two separated NN controllers, namely, proportional control part and derivative control part. Simulation results for a catamaran system show that the proposed NN controller is superior to LQR in the regulation and tracking problems.

데이터 마이닝 기법의 기업도산예측 실증분석 (A Study of Data Mining Techniques in Bankruptcy Prediction)

  • Lee, Kidong
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링 (On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network)

  • 박춘성;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

신경망을 이용한 공정변수에 따른 수평 폴리머 표면의 경사각에 관한 연구 (Neural network modeling of Pretilt Angle on the Homogeneous Polyimide Surface)

  • 이정환;고영돈;강희진;서대식;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.426-427
    • /
    • 2006
  • In this paper, the neural network model of the pretilt angle in the nematic liquid crystal on the homogeneous polyimide surface with different surface treatments is investigated. The pretilt angle is one of the main factors to determine the alignment of the liquid crystal display. The pretilt angle is measured to analyze the variation of the characteristics on the various process conditions. The rubbing strength and the hard baking temperature are considered as input factors. Latin hypercube sampling was used to generate initial weights and biases.

  • PDF

신경회로망을 이용한 필릿 이음부의 가스메탈 아크용접변수 선정에 관한 연구 (A Study on Selection of Gas Metal Arc Welding Parameters of Fillet Joints Using Neural Network)

  • 문형순;이승영;나석주
    • Journal of Welding and Joining
    • /
    • 제11권4호
    • /
    • pp.44-56
    • /
    • 1993
  • The arc welding processes are substantially nonlinear, in addition to being highly coupled multivariable systems, Frequently, not all the variables affecting the welding quality are known, nor may they be easily quantified. From this point of view, decoupling between the welding parameters from the welding quality is very difficult, which makes it also difficult to control the welding parameters for obtaining the desired welding quality. In this study, a neural network based on the backpropagation algorithm was implemented and adopted for the selection of gas metal arc welding parameters of the fillet joint, that is, welding current, arc voltage and welding speed. The performance of the neural network for modeling the relationship between the welding quality and welding parameters was presented and evaluated by using the actual welding data. To obtain the optimal neural network structure, various types of the neural network structures were tested with the experimental data. It was revealed that the neural network can be effectively adopted to select the appropriate gas metal arc welding parameter of fillet joints for a given weld quality.

  • PDF

신경망과 유한요소법을 이용한 단조품의 초기 소재 형상 결정 (Determination of Initial Billet Size using The Artificial Neural Networks and The Finite Element Method for a Forged Product)

  • 김동진;고대철;김병민;최재찬
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.214-221
    • /
    • 1995
  • In the paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in the neural network. The architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of a neural network, an optimal billet is determined by applying the nonlinear mathematical relationship between the aspect ratios in the initial billet and the final products. The amount of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet aspect ratios and those of the unfilled volumes. After learning, the system is able to predict the filling regions which are exactly the same or slightly different to the results of finite element simulation. This new method is applied to find the optimal billet size for the plane strain rib-web product in cold forging. This would reduce the number of finite element simulation for determining the optimal billet size of forging product, further it is usefully adapted to physical modeling for the forging design.

  • PDF

Approximate and Three-Dimensional Modeling of Brightness Levels in Interior Spaces by Using Artificial Neural Networks

  • Sahin, Mustafa;Oguz, Yuksel;Buyuktumturk, Fuat
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1822-1829
    • /
    • 2015
  • In this study, artificial neural networks were used to determine the intensity of brightness in interior spaces. The illumination elements to illuminate indoor spaces were considered, not individually, but as a system. So, during the planned maintenance periods of an illumination system, after its design and installation, simple brightness level measurements must be taken. For a three-dimensional evaluation of the brightness level in indoor spaces in a speedy and accurate manner, the obtained brightness level measurement results and artificial neural network model were used. Upon estimation of the most suitable brightness level for indoor spaces by using the artificial neutral network model, the energy demands required by the illumination elements decreased. Consequently, in this study, with estimations of brightness levels, the extent to which the artificial neutral networks become successful was observed and more correct results have been obtained in terms of both economy and usage.

태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상 (Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems)

  • 박지원;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

Artificial Neural Network Models in Prediction of the Moisture Content of a Spray Drying Process

  • Taylan, Osman;Haydar, Ali
    • 한국세라믹학회지
    • /
    • 제41권5호
    • /
    • pp.353-358
    • /
    • 2004
  • Spray drying is a unique drying process for powder production. Spray dried product must be free-flowing in order to fill the pressing dies rapidly, especially in the ceramic production. The important powder characteristics are; the particle size distribu-tion and moisture content of the finished product that can be estimated and adjusted by the spray dryer operation, within limits, through regulation of atomizer and drying conditions. In order to estimate the moisture content of the resultant dried product, we modeled the control system of the drying process using two different Artificial Neural Network (ANN) approaches, namely the Back-Propagation Multiplayer Perceptron (BPMLP) algorithm and the Radial Basis Function (RBF) network. It was found out that the performance of both of the artificial neural network models were quite significant and the total testing error for the 100 data was 0.8 and 0.7 for the BPMLP algorithm and the RBF network respectively.

유전자 알고리즘 기반 다항식 뉴럴네트워크를 이용한 비선형 질소제거 SBR 공정의 모델링 (Modeling of Nonlinear SBR Process for Nitrogen Removal via GA-based Polynomial Neural Network)

  • 김동원;박장현;이호식;박영환;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.280-285
    • /
    • 2004
  • This paper is concerned with the modeling and identification of sequencing batch reactor (SBR) via genetic algorithm based polynomial neural network (GA-based PNN). The model describes a biological SBR used in the wastewater treatment process fur nitrogen removal. A conventional polynomial neural network (PNN) is applied to construct a predictive model of SBR process fur nitrogen removal before. But the performances of PNN depend strongly on the number of input variables available to the model, the number of input variables and type (order) of the polynomials to each node. They must be fixed by the designer in advance before the architecture is constructed. So the trial and error method must go with heavy computation burden and low efficiency. To alleviate these problems, we propose GA-based PNN. The order of the polynomial, the number of input variables, and the optimum input variables are encoded as a chromosome and fitness of each chromosome is computed. Simulation results have shown that the complex SBR process can be modeled reasonably well by the present scheme with a much simpler structure compared with the conventional PNN model.