In this paper, a Learning module for a reconfigurable neural network processor(ERNIE) was proposed for an On-chip learning. The existing reconfigurable neural network processor(ERNIE) has a much better performance than the software program but it doesn't support On-chip learning function. A learning module which is based on Back Propagation algorithm was designed for a help of this weak point. A pipeline structure let the learning module be able to update the weights rapidly and continuously. It was tested with five types of alphabet font to evaluate learning module. It compared with C programed neural network model on PC in calculation speed and correctness of recognition. As a result of this experiment, it can be found that the neural network processor(ERNIE) with learning module decrease the neural network training time efficiently at the same recognition rate compared with software computing based neural network model. This On-chip learning module showed that the reconfigurable neural network processor(ERNIE) could be a evolvable neural network processor which can fine the optimal configuration of network by itself.
There are two important things for the general purpose neural network processor. The first is a capability to build various structures of neural network, and the second is to be able to support suitable learning method for that neural network. Some way to process various learning algorithms is required for on-chip learning, because the more neural network types are to be handled, the more learning methods need to be built into. In this paper, an improved hardware structure is proposed to compute various kinds of learning algorithms flexibly. The hardware structure is based on the existing modular neural network structure. It doesn't need to add a new circuit or a new program for the learning process. It is shown that rearrangements of the existing processing elements can produce several neural network learning modules. The performance and utilization of this module are analyzed by comparing with other neural network chips.
In this paper, a hybrid neural network is proposed to improve the learning ability of a neural network. The union of the characteristics of a Self-Organizing Neural Network model and of multi-layer perceptron model using the backpropagation learning method gives us the advantage of reduction of the learning error and the learning time. In learning process, the proposed hybrid neural network reduces the number of nodes in hidden layers to reduce the calculation time. And this proposed neural network uses the fuzzy feedback values, when it updates the responding region of each node in the hidden layer. To show the effectiveness of this proposed hybrid neural network, the boolean function(XOR, 3Bit Parity) and the solution of inverse kinematics are used. Finally, this proposed hybrid neural network is applied to the visual tracking control of a PUMA560 robot, and the result data is presented.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권1호
/
pp.76-82
/
2005
Speech signal has various features of speakers. This feature is extracted from speech signal processing. The speaker is identified by the speaker identification system. In this paper, we propose the speaker identification system that uses the incremental learning based on neural network. Recorded speech signal through the microphone is blocked to the frame of 1024 speech samples. Energy is divided speech signal to voiced signal and unvoiced signal. The extracted 12 orders LPC cpestrum coefficients are used with input data for neural network. The speakers are identified with the speaker identification system using the neural network. The neural network has the structure of MLP which consists of 12 input nodes, 8 hidden nodes, and 4 output nodes. The number of output node means the identified speakers. The first output node is excited to the first speaker. Incremental learning begins when the new speaker is identified. Incremental learning is the learning algorithm that already learned weights are remembered and only the new weights that are created as adding new speaker are trained. It is learning algorithm that overcomes the fault of neural network. The neural network repeats the learning when the new speaker is entered to it. The architecture of neural network is extended with the number of speakers. Therefore, this system can learn without the restricted number of speakers.
본 논문은 연결강도를 조정할 때 결정 경계선 근처에 있는 데이터를 더 반영하는 학습법칙을 제안하였다. 이 학습법칙은 outlier가 결정 경계선에 미치는 영향을 줄여 더 나은 결정 경계선을 형성하도록 한다. 제안하는 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망의 구조에 적용하였다. IAFC 신경회로망은 배운 것을 유지하는 안정성이 있으면서, 새로운 것을 배울 수 있는 안정성이 있다. 이 퍼지 신경회로망의 성능과 LVQ(Learning Vector Quantization) 신경회로망 및 오류역전파 신경회로망의 성능과 비교하였다. 실험결과 제안하는 퍼지 신경회로망의 성능이 우수함을 보여주었다.
Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.
RAM 기반 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는(weightless) 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. 지도 학습에 기반을 둔 RAM 기반 신경망은 패턴 인식 분야에는 우수한 성능을 보이는 반면, 비지도 학습에 의해 패턴을 구분해야 하는 범주화 연구에는 적합하지 않은 모델로 분류된다. 본 논문에서는 비지도 학습 알고리즘을 제안하여 RAM 기반 신경망으로 패턴 범주화를 수행한다. 제안된 비지도 학습 알고리즘에 의해 RAM 기반 신경망은 입력 패턴에 따라 자율 학습하여 스스로 범주를 생성할 수 있으며, 이를 통해 RAM 기반 신경망이 지도 학습과 비지도 학습이 모두 가능한 복합 모델임을 증명한다. 실험에 사용한 학습 패턴으로는 0에서 9까지의 오프라인 필기체 숫자로 구성된 MNIST 데이터베이스를 사용하였다.
Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.
This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.
Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.