한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.399-403
/
1998
In this paper, we proposed a new fuzzy supervised learning algorithm. We construct, and train, a new type fuzzy neural net to model the linear activation function. Properties of our fuzzy neural net include : (1) a proposed linear activation function ; and (2) a modified delta rule for learning algorithm. We applied this proposed learning algorithm to exclusive OR,3 bit parity using benchmark in neural network and pattern recognition problems, a kind of image recognition.
We consider the object recognition of industrial tools which have one degree of freedom. In the case of pliers, the shape varies as the jaw angle varies. Thus, a feature vector made from the boundary image also varies along with the jaw angle. But a pattern recognizer should have the ability of classifying objects without any regards to the angle variation. For a pattern recognizer we have utilized a backpropagation neural net. Feature vectors were made from Fourier descriptors of boundary images by truncating the high frequency components, and they were used as inputs to the neural net for training and recognition. In our experiments, backpropagation neural net outperforms the minimum distance rule which is widely used in the pattern recognition. The performance comparison also made under noisy environments.
Alzheimer's disease is one type of dementia, the symptoms can be treated by detecting the disease at its early stages. Recently, many computer-aided diagnosis using magnetic resonance image(MRI) have shown a good results in the classification of AD. Taken these MRI images and feed to Free surfer software to extra the features. In consideration, using T1-weighted images and classifying using the convolution neural network (CNN) model are proposed. In this paper, taking the subjects from ADNI of subcortical and cortical features of 190 subjects. Consider the study to reduce the complexity of the model by using the single layer in the Res-Net, VGG, and Alex Net. Multi-class classification is used to classify four different stages, CN, EMCI, LMCI, AD. The following experiment shows for respective classification Res-Net, VGG, and Alex Net with the best accuracy with VGG at 96%, Res-Net, GoogLeNet and Alex Net at 91%, 93% and 89% respectively.
In our previous study, we investigated the use of ensemble models based on LeNet and MiniVGGNet to classify the images of transverse and longitudinal surfaces of five Korean softwoods (cedar, cypress, Korean pine, Korean red pine, and larch). It had accomplished an average F1 score of more than 98%; the classification performance of the longitudinal surface image was still less than that of the transverse surface image. In this study, ensemble methods of two different convolutional neural network models (LeNet3 for smartphone camera images and NIRNet for NIR spectra) were applied to lumber species classification. Experimentally, the best classification performance was obtained by the averaging ensemble method of LeNet3 and NIRNet. The average F1 scores of the individual LeNet3 model and the individual NIRNet model were 91.98% and 85.94%, respectively. By the averaging ensemble method of LeNet3 and NIRNet, an average F1 score was increased to 95.31%.
최근 인공지능 딥러닝 분야는 컴퓨팅 자원의 높은 연산량과 가격문제로 인해 상용화에 어려움이 존재했다. 본 논문은 더블 프루닝 기법을 적용하여 심층신경망 모델들과 다수의 데이터셋에서의 성능을 평가하고자 한다. 더블 프루닝은 기본의 네트워크 간소화(Network-Slimming)과 파라미터 프루닝(Parameter-Pruning)을 결합한다. 이는 기존의 학습에 중요하지 않는 매개변수를 절감하여 학습 정확도를 저해하지 않고 속도를 향상시킬 수 있다는 장점이 있다. 다양한 데이터셋 학습 이후에 프루닝 비율을 증가시켜, 모델의 사이즈를 감소시켰다. NetScore 성능 분석 결과 MobileNet-V3가 가장 성능이 높게 나타났다. 프루닝 이후의 성능은 Cifar 10 데이터셋에서 깊이 우선 합성곱 신경망으로 구성된 MobileNet-V3이 가장 성능이 높았고, 전통적인 합성곱 신경망으로 이루어진 VGGNet, ResNet또한 높은 폭으로 성능이 증가함을 확인하였다.
본 논문에서는, 시뮬레이션 상에서 반도체 후단 공정의 프로세스를 구현하고 파이프 내부 상황을 모니터링하기 위해 전기 정전용량을 기반으로 한 U-net 모델을 적용하였다. 배관에 부착된 전극에서 측정한 정전용량 값은 U-net 네트워크 모델의 입력 데이터로 사용되며, 모델을 통해 추정한 유전율 분포를 가지고 파이프 단면을 이미지화하였다. 성능 평가를 위해 수치 시뮬레이션 얀에서 U-net 모델, FCNN(Fully-connected neural network) 모델, Newton-Raphson 방법으로 재구성한 이미지를 비교한 결과, U-net이 다른 이미지 복원 방식보다 좋은 복원 성능을 보였다.
최근 합성곱 신경망은 컴퓨터 비전에 관련된 여러 분야에서 높은 성능을 보여 주고 있으나 합성곱 신경망이 요구하는 많은 연산양은 임베디드 환경에 도입되는 것을 어렵게 하고 있다. 이를 해결하기 위해 ASIC이나 FPGA를 통한 합성곱 신경망의 구현에 많은 관심이 모이고 있고, 이러한 구현을 위해서는 효율적인 고정 소수점 표현이 필요하다. 고정 소수점 표현은 ASIC이나 FPGA에서의 구현에 적합하나 합성곱 신경망의 성능이 저하될 수 있는 문제가 있다. 이 논문에서는 합성곱 계층과 배치(batch) 정규화 계층에 대해 고정 소수점 표현을 분리해서, ResNet-50 합성곱 신경망의 합성곱 계층을 표현하기 위해 필요한 비트 수를 16비트에서 10비트로 줄일 수 있게 하였다. 연산이 집중되는 합성곱 계층이 더 간단하게 표현되므로 합성곱 신경망 구현이 전체적으로 더 효율적으로 될 것이다.
본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.
In general, it is not easy to find the linearizing coordinate transformation map for a class of systems which are state equivalent to linear systems, because it is required to solve a set of partial differential equations. It is possible to construct an arbitrary nonlinear function with a backpropagation(BP) net. Utilizing this property of BP neural net, we construct a desired linearizing coordinate transformation map. That is, we implement a unknown coordinate transformation map through the training of neural weights. We have shown an example which supports this idea.
독버섯 중독 사건이 종종 발생한다. 본 논문은 딥러닝 기술을 활용한 버섯 인식 시스템을 제안한다. 딥러닝 기법 중 하나인 컨볼루션 신경망을 사용하였다. 컨볼루션 신경망을 학습하기 위해 이미지 크롤링을 이용하여 38종의 버섯에 대해 1478장의 영상을 수집하였다. 수집한 데이터셋을 가지고 AlexNet, VGGNet, GoogLeNet을 비교 실험하였으며, 클래스 수 확장에 따른 비교 실험, 전이 학습을 사용한 비교실험을 하였다. 실험 결과 1순위 정확도는 82.63%, 5순위 정확도는 96.84%라는 성능을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.