• 제목/요약/키워드: Neural Net

검색결과 763건 처리시간 0.022초

A New Fuzzy Supervised Learning Algorithm

  • Kim, Kwang-Baek;Yuk, Chang-Keun;Cha, Eui-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.399-403
    • /
    • 1998
  • In this paper, we proposed a new fuzzy supervised learning algorithm. We construct, and train, a new type fuzzy neural net to model the linear activation function. Properties of our fuzzy neural net include : (1) a proposed linear activation function ; and (2) a modified delta rule for learning algorithm. We applied this proposed learning algorithm to exclusive OR,3 bit parity using benchmark in neural network and pattern recognition problems, a kind of image recognition.

  • PDF

신경회로망을 이용한 물체 인식 (Object recognition of one D.O.F. tools by a backpropagation neural network)

  • 김흥봉;남광희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.996-1001
    • /
    • 1991
  • We consider the object recognition of industrial tools which have one degree of freedom. In the case of pliers, the shape varies as the jaw angle varies. Thus, a feature vector made from the boundary image also varies along with the jaw angle. But a pattern recognizer should have the ability of classifying objects without any regards to the angle variation. For a pattern recognizer we have utilized a backpropagation neural net. Feature vectors were made from Fourier descriptors of boundary images by truncating the high frequency components, and they were used as inputs to the neural net for training and recognition. In our experiments, backpropagation neural net outperforms the minimum distance rule which is widely used in the pattern recognition. The performance comparison also made under noisy environments.

  • PDF

A Comparative Study of the CNN Model for AD Diagnosis

  • Vyshnavi Ramineni;Goo-Rak Kwon
    • 스마트미디어저널
    • /
    • 제12권7호
    • /
    • pp.52-58
    • /
    • 2023
  • Alzheimer's disease is one type of dementia, the symptoms can be treated by detecting the disease at its early stages. Recently, many computer-aided diagnosis using magnetic resonance image(MRI) have shown a good results in the classification of AD. Taken these MRI images and feed to Free surfer software to extra the features. In consideration, using T1-weighted images and classifying using the convolution neural network (CNN) model are proposed. In this paper, taking the subjects from ADNI of subcortical and cortical features of 190 subjects. Consider the study to reduce the complexity of the model by using the single layer in the Res-Net, VGG, and Alex Net. Multi-class classification is used to classify four different stages, CN, EMCI, LMCI, AD. The following experiment shows for respective classification Res-Net, VGG, and Alex Net with the best accuracy with VGG at 96%, Res-Net, GoogLeNet and Alex Net at 91%, 93% and 89% respectively.

Wood Species Classification Utilizing Ensembles of Convolutional Neural Networks Established by Near-Infrared Spectra and Images Acquired from Korean Softwood Lumber

  • Yang, Sang-Yun;Lee, Hyung Gu;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.385-392
    • /
    • 2019
  • In our previous study, we investigated the use of ensemble models based on LeNet and MiniVGGNet to classify the images of transverse and longitudinal surfaces of five Korean softwoods (cedar, cypress, Korean pine, Korean red pine, and larch). It had accomplished an average F1 score of more than 98%; the classification performance of the longitudinal surface image was still less than that of the transverse surface image. In this study, ensemble methods of two different convolutional neural network models (LeNet3 for smartphone camera images and NIRNet for NIR spectra) were applied to lumber species classification. Experimentally, the best classification performance was obtained by the averaging ensemble method of LeNet3 and NIRNet. The average F1 scores of the individual LeNet3 model and the individual NIRNet model were 91.98% and 85.94%, respectively. By the averaging ensemble method of LeNet3 and NIRNet, an average F1 score was increased to 95.31%.

심층신경망의 더블 프루닝 기법의 적용 및 성능 분석에 관한 연구 (Application and Performance Analysis of Double Pruning Method for Deep Neural Networks)

  • 이선우;양호준;오승연;이문형;권장우
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.23-34
    • /
    • 2020
  • 최근 인공지능 딥러닝 분야는 컴퓨팅 자원의 높은 연산량과 가격문제로 인해 상용화에 어려움이 존재했다. 본 논문은 더블 프루닝 기법을 적용하여 심층신경망 모델들과 다수의 데이터셋에서의 성능을 평가하고자 한다. 더블 프루닝은 기본의 네트워크 간소화(Network-Slimming)과 파라미터 프루닝(Parameter-Pruning)을 결합한다. 이는 기존의 학습에 중요하지 않는 매개변수를 절감하여 학습 정확도를 저해하지 않고 속도를 향상시킬 수 있다는 장점이 있다. 다양한 데이터셋 학습 이후에 프루닝 비율을 증가시켜, 모델의 사이즈를 감소시켰다. NetScore 성능 분석 결과 MobileNet-V3가 가장 성능이 높게 나타났다. 프루닝 이후의 성능은 Cifar 10 데이터셋에서 깊이 우선 합성곱 신경망으로 구성된 MobileNet-V3이 가장 성능이 높았고, 전통적인 합성곱 신경망으로 이루어진 VGGNet, ResNet또한 높은 폭으로 성능이 증가함을 확인하였다.

전기 정전용량을 기반으로 U-net 모델을 이용한 반도체 후단 공정의 잔류물 모니터링 (Residual deposit monitoring of semiconductor back-end process using U-net model based on the electrical capacitance)

  • 전민호;아닐쿠마;김경연
    • 전기전자학회논문지
    • /
    • 제28권2호
    • /
    • pp.158-167
    • /
    • 2024
  • 본 논문에서는, 시뮬레이션 상에서 반도체 후단 공정의 프로세스를 구현하고 파이프 내부 상황을 모니터링하기 위해 전기 정전용량을 기반으로 한 U-net 모델을 적용하였다. 배관에 부착된 전극에서 측정한 정전용량 값은 U-net 네트워크 모델의 입력 데이터로 사용되며, 모델을 통해 추정한 유전율 분포를 가지고 파이프 단면을 이미지화하였다. 성능 평가를 위해 수치 시뮬레이션 얀에서 U-net 모델, FCNN(Fully-connected neural network) 모델, Newton-Raphson 방법으로 재구성한 이미지를 비교한 결과, U-net이 다른 이미지 복원 방식보다 좋은 복원 성능을 보였다.

ResNet-50 합성곱 신경망을 위한 고정 소수점 표현 방법 (Efficient Fixed-Point Representation for ResNet-50 Convolutional Neural Network)

  • 강형주
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 최근 합성곱 신경망은 컴퓨터 비전에 관련된 여러 분야에서 높은 성능을 보여 주고 있으나 합성곱 신경망이 요구하는 많은 연산양은 임베디드 환경에 도입되는 것을 어렵게 하고 있다. 이를 해결하기 위해 ASIC이나 FPGA를 통한 합성곱 신경망의 구현에 많은 관심이 모이고 있고, 이러한 구현을 위해서는 효율적인 고정 소수점 표현이 필요하다. 고정 소수점 표현은 ASIC이나 FPGA에서의 구현에 적합하나 합성곱 신경망의 성능이 저하될 수 있는 문제가 있다. 이 논문에서는 합성곱 계층과 배치(batch) 정규화 계층에 대해 고정 소수점 표현을 분리해서, ResNet-50 합성곱 신경망의 합성곱 계층을 표현하기 위해 필요한 비트 수를 16비트에서 10비트로 줄일 수 있게 하였다. 연산이 집중되는 합성곱 계층이 더 간단하게 표현되므로 합성곱 신경망 구현이 전체적으로 더 효율적으로 될 것이다.

부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식 (Real-Time Face Recognition Based on Subspace and LVQ Classifier)

  • 권오륜;민경필;전준철
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.19-32
    • /
    • 2007
  • 본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.

  • PDF

Construction of coordinate transformation map using neural network

  • Lee, Wonchang;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1845-1847
    • /
    • 1991
  • In general, it is not easy to find the linearizing coordinate transformation map for a class of systems which are state equivalent to linear systems, because it is required to solve a set of partial differential equations. It is possible to construct an arbitrary nonlinear function with a backpropagation(BP) net. Utilizing this property of BP neural net, we construct a desired linearizing coordinate transformation map. That is, we implement a unknown coordinate transformation map through the training of neural weights. We have shown an example which supports this idea.

  • PDF

컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식 (Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning)

  • 강은철;한영태;오일석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2018
  • 독버섯 중독 사건이 종종 발생한다. 본 논문은 딥러닝 기술을 활용한 버섯 인식 시스템을 제안한다. 딥러닝 기법 중 하나인 컨볼루션 신경망을 사용하였다. 컨볼루션 신경망을 학습하기 위해 이미지 크롤링을 이용하여 38종의 버섯에 대해 1478장의 영상을 수집하였다. 수집한 데이터셋을 가지고 AlexNet, VGGNet, GoogLeNet을 비교 실험하였으며, 클래스 수 확장에 따른 비교 실험, 전이 학습을 사용한 비교실험을 하였다. 실험 결과 1순위 정확도는 82.63%, 5순위 정확도는 96.84%라는 성능을 얻었다.