DOI QR코드

DOI QR Code

Residual deposit monitoring of semiconductor back-end process using U-net model based on the electrical capacitance

전기 정전용량을 기반으로 U-net 모델을 이용한 반도체 후단 공정의 잔류물 모니터링

  • Minho JEON (Dept. of Electronics Engineering, Jeju National University) ;
  • Anil Kumar Khambampati (Dept. of Electronics Engineering, Jeju National University) ;
  • Kyung-Youn Kim (Dept. of Electronics Engineering, Jeju National University)
  • 전민호 ;
  • 아닐쿠마 ;
  • 김경연
  • Received : 2024.05.13
  • Accepted : 2024.06.19
  • Published : 2024.06.30

Abstract

In this study, U-net model based on electrical capacitance is applied to monitor the condition inside the pipeline of semiconductor rear end process implemented in the numerical simulation. Capacitance values measured from electrodes attached to the pipeline is used as input data for the U-net network model and estimated permittivity distribution by the U-net model is used to reconstructed cross-sectional image at the pipeline. In the numerical simulation, images reconstructed by U-net model, Fully-connected neural network (FCNN) model and Newton-Raphson method are compared for evaluation. U-net model shows good results as compared to other models.

본 논문에서는, 시뮬레이션 상에서 반도체 후단 공정의 프로세스를 구현하고 파이프 내부 상황을 모니터링하기 위해 전기 정전용량을 기반으로 한 U-net 모델을 적용하였다. 배관에 부착된 전극에서 측정한 정전용량 값은 U-net 네트워크 모델의 입력 데이터로 사용되며, 모델을 통해 추정한 유전율 분포를 가지고 파이프 단면을 이미지화하였다. 성능 평가를 위해 수치 시뮬레이션 얀에서 U-net 모델, FCNN(Fully-connected neural network) 모델, Newton-Raphson 방법으로 재구성한 이미지를 비교한 결과, U-net이 다른 이미지 복원 방식보다 좋은 복원 성능을 보였다.

Keywords

Acknowledgement

This research was supported by the 2023 scientific promotion program funded by Jeju National University

References

  1. G. S. May and C. J. Spanos, "Fundamentals of semiconductor manufacturing and process control," John Wiley & Sons, 2006. 
  2. M. F. Yoo, J. Wang and J. C. Sheu, "Method for preventing clogging of reaction chamber exhaust lines" U.S. Patent Application No.11/466,922, 2008. 
  3. K. M. Choi, H. C. An and K. S. Kim, "Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes," Journal of Occupational and Environmental Hygiene, vol.12, no.2, pp.114-122, 2014. DOI: 10.1080/15459624.2014.955178 
  4. D. M. McElvenny, A. J. Darnton, J. T. Hodgson, S. D. Clarke, R. C. Elliott and J. Osman, "Investigation of cancer incidence and mortality at a Scottish semiconductor manufacturing facility," Occupational Medicine, vol.53, no.7, pp.419-430, 2003. DOI: 10.1093/occmed/kqg111 
  5. C. Beall, T. J. Bender, H. Cheng, R. Herrick, A. Kahn, R. Matthews and E. Delzell, "Mortality among semiconductor and storage devicemanufacturing workers," Journal of Occupational and Environmental Medicine, vol.10, pp.996-1014, 2005. DOI: 10.1097/01.jom.0000183094.42763.f0 
  6. A. A. Kendoush, and Z. A. Sarkis, "Void fraction measurement by X-ray absorption," Exp. Therm. Fluid Sci, vol.25, no.8, pp.615-621, 2002. DOI: 10.1016/S0894-1777(01)00117-0 
  7. E. Nazemi, S. A. Feghhi, G. H. Roshani, R. G. Peyvandi and S. Setayeshi, "Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation," Nuclear Engineering and Technology, vol.48, no.1, pp.64-71, 2016. DOI: 10.1016/j.net.2015.09.005 
  8. M. Alamoudi, M. A. Sattari, M. Balubaid, E. Eftekhari-Zadeh, E. Nazemi, O. Taylan and E. M. Kalmoun, "Application of gamma attenuation technique and artificial intelligence to detect scale thickness in pipelines in which two-phase flows with different flow regimes and void fractions exist," Symmetry, vol.13, no.7, pp.1198-2003, 2021. DOI: 10.3390/sym13071198 
  9. C. R. Zamarreno, C. Martelli, V. H. Baroncini, E. N. Santos, M. J. Silva, R. E. Morales and I. R. Matias, "Single and multiphase flow characterization by means of an optical fiber Bragg grating grid," Journal of Lightwave Technology, vol.33, no.9, pp.1857-1862, 2015. DOI: 10.1109/JLT.2015.2394788 
  10. H. C. Yang, D. K. Kim and M. H. Kim, "Void fraction measurement using impedance method," Flow Meas. Inst, vol.14, no.4-5, pp.151-160, 2003. DOI: 10.1016/S0955-5986(03)00020-7 
  11. Z. Huang, B. Wang and H. Li, "Application of electrical capacitance tomography to the void fraction measurement of two-phase flow," IEEE Trans Inst. Meas, vol.52, no.1, pp.7-12, 2003. DOI: 10.1109/TIM.2003.809087 
  12. W. Q. Yang, M. S. Beck and M. Byars, "Electrical capacitance tomography-from design to applications." Measurement and Control, vol. 28, no.9, pp.61-266, 1995. DOI: 10.1177/002029409502800901 
  13. T. York, "Status of electrical tomography in industrial applications," Journal of Electronic imaging, vol.10, no.3, pp.608-619, 2001. DOI: 10.1117/1.1377308 
  14. U. Khan, W. Pao, N. Sallih and F. Hassan, "Flow Regime Identification in Gas-Liquid Two-Phase Flow in Horizontal Pipe by Deep Learning," Journal of Advanced Research in Applied Sciences and Engineering Technology, vol.27, no.1, pp.86-91, 2022. DOI: 10.37934/araset.27.1.8691 
  15. A. Voss, P. Hosseini, M. Pour-Ghaz, M. Vauhkonen and A. Seppanen, "Three-dimensional electrical capacitance tomography - A tool for characterizing moisture transport properties of cement-based materials," Materials and Design, vol.181, no.5, pp.107967, 2019. DOI: 10.1016/j.matdes.2019.107967 
  16. H. Wang and W. Yang, 2021. "Application of electrical capacitance tomography in pharmaceutical fluidized beds-A review," Chemical Eng. Sci, vol. 231, p.116236. 2021. DOI: 10.1016/j.ces.2020.116236 
  17. G. Lu, L. Peng, B. Zhang, and Y. Liao, "Preconditioned Landweber iteration algorithm for electrical capacitance tomography," Flow measurement and Instrument, vol.16, no.2 pp.163-167, 2005. DOI: 10.1016/j.flowmeasinst.2005.02.006 
  18. B. Chen, M. C. Ekwonu and S. Zhang, "Deep learning-assisted segmentation of bubble image shadowgraph," Journal of Visualization, vol.25, pp.1125-1136, 2022. DOI: 10.1007/s12650-022-00849-4 
  19. W. Chu, Y. Liu, L. Pan, H. Zhu and X. Yang, "Study on Measure Approach of Void Fraction in Narrow Channel Based on Fully Convolutional Neural Network," DOI: 10.3389/fenrg.2021.636813 
  20. W. Li, W. Song, G. Yin, M. C. Ong and F. Han, "Flow regime identification in the subsea jumper based on electrical capacitance tomography and convolution neural network," Ocean Eng, vol.266, Part. 5, 2022. DOI: 10.1016/j.oceaneng.2022.113152 
  21. J. Long, E. Shelhamer and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," IEEE conference on computer vision and pattern recognition, pp.3431-3440, 2015. DOI: 10.48550/arXiv.1411.4038 
  22. O. Ronneberger, P. Fischer and T. Brox, "U-Net:Convolutional Networks for Biomedical Image Segmentation," Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), 2015, pp.234-241. DOI: 10.48550/arXiv.1505.04597 
  23. Y. Ji, H. Zhang, Z. Zhang and M. Liu, "CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances," Information Science., vol.546, pp.835-857, 2021. DOI: 10.1016/j.ins.2020.09.003 
  24. C. Yu and F. Wenru, "R-UNet Deep Learning-Based Damage Detection of CFRP with Electrical Impedance Tompgraphy," IEEE. Tran. Inst. Meas., vol.27, 2022. DOI: 10.1109/TIM.2022.3205908 
  25. W. Q. Yang and L. Peng, "Image reconstruction algorithms for electrical capacitance tomography," Meas. Sci. Technol., vol.14, no.1, pp.1-13, 2002. DOI: 10.1088/0957-0233/14/1/201 
  26. W. Q. Yang, M. S. Beck and M. Byars, "Electrical capacitance tomography-from design to application," Meas. Sci. Technol., vol.28, no.9, pp.261-266, 1995. DOI: 10.1177/002029409502800901 
  27. A. K. Khambampati, S. K. Sharma and K. Y. Kim, "Estimation of electrode contact impedance and conductivity of single-layer graphene using electrical impedance tomography," Meas. Sci Technol., vol.33, no.8, 084007, 2022. DOI: 10.1088/1361-6501/ac6c76 
  28. H. Wang, H. Shi, K. Lin, C. Qin, L. Zhao, Y. Huang and C. Liu, "A high-precision arrhythmia classification method based on dual fully connected neural network," Biomedical Signal Processing and Control, vol.58, 101874, 2020. DOI: 10.1016/j.bspc.2020.101874 
  29. T. N. Sainath, O. Vinyals, A. Senior and H. Sak, "CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORK," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.4580-4584. DOI: 10.1109/ICASSP.2015.7178838 
  30. B. S Ko, H. G. Kim, K. J. Oh and H. J. Choi, "Controlled dropout: A different approach to using dropout on deep neural network," 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), 2017, pp.358-362. DOI: 10.1109/BIGCOMP.2017.7881693 
  31. P. Liashchynskyi and P. Liashchynskyi, "Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS," DOI: 10.48550/arXiv.1912.06059 
  32. M. G. M. Abdolrasol, S. M. S. Hussain, T. S. Ustun, M. R. Sarker, M. A. Hannan, R. Mohamed, J. A. Ali, S. Mekhilef and A. Milad, "Artificial Neural Networks Based Optimization Techniques: A Review," DOI: 10.3390/electronics10212689 
  33. C. E. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, "Activation Functions: Comparison of Trends in Practice and Research for Deep Learning," DOI: 10.48550/arXiv.1811.03378 
  34. J. Xu, Z. Li, B. Du, M. Zhang and J. Liu, "Reluplex made more practical: Leaky ReLU," 2020 IEEE Symposium on Computers and Communications (ISCC), 2020, pp.1-7 DOI: 10.1109/ISCC50000.2020.9219587 
  35. N. Zhang, S. -L. Shen, A. Zhou and Y. -S. Xu, "Investigation on Performance of Neural Networks Using Quadratic Relative Error Cost Function," in IEEE Access, vol.7, pp.106642-106652, 2019. DOI: 10.1109/ACCESS.2019.2930520