• 제목/요약/키워드: Neural Model

검색결과 5,505건 처리시간 0.029초

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

다중 목적 입자 군집 최적화 알고리즘 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, we proposed a new architecture called radial basis function-based polynomial neural networks classifier that consists of heterogeneous neural networks such as radial basis function neural networks and polynomial neural networks. The underlying architecture of the proposed model equals to polynomial neural networks(PNNs) while polynomial neurons in PNNs are composed of Fuzzy-c means-based radial basis function neural networks(FCM-based RBFNNs) instead of the conventional polynomial function. We consider PNNs to find the optimal local models and use RBFNNs to cover the high dimensionality problems. Also, in the hidden layer of RBFNNs, FCM algorithm is used to produce some clusters based on the similarity of given dataset. The proposed model depends on some parameters such as the number of input variables in PNNs, the number of clusters and fuzzification coefficient in FCM and polynomial type in RBFNNs. A multiobjective particle swarm optimization using crowding distance (MoPSO-CD) is exploited in order to carry out both structural and parametric optimization of the proposed networks. MoPSO is introduced for not only the performance of model but also complexity and interpretability. The usefulness of the proposed model as a classifier is evaluated with the aid of some benchmark datasets such as iris and liver.

Hybrid 신경망을 이용한 산업폐수 공정 모델링

  • 이대성;박종문
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.133-136
    • /
    • 2000
  • In recent years, hybrid neural network approaches which combine neural networks and mechanistic models have been gaining considerable interests. These approaches are potentially very efficient to obtain more accurate predictions of process dynamics by combining mechanistic and neural models in such a way that the neural network model properly captures unknown and nonlinear parts of the mechanistic model. In this work, such an approach was applied in the modeling of a full-scale coke wastewater treatment process. First, a simplified mechanistic model was developed based on the Activated Sludge Model No.1 and the specific process knowledge, Then neural network was incorporated with the mechanistic model to compensate the errors between the mechanistic model and the process data. Simulation and actual process data showed that the hybrid modeling approach could predict accurate process dynamics of industrial wastewater treatment plant. The promising results indicated that the hybrid modeling approach could be a useful tool for accurate and cost-effective modeling of biochemical processes.

  • PDF

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

A neural network shelter model for small wind turbine siting near single obstacles

  • Brunskill, Andrew William;Lubitz, William David
    • Wind and Structures
    • /
    • 제15권1호
    • /
    • pp.43-64
    • /
    • 2012
  • Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. A neural network-based model has been developed which predicts mean wind speed and turbulence intensity at points in an obstacle's region of influence, relative to unsheltered conditions. The neural network was trained using measurements collected in the wakes of 18 scale building models exposed to a simulated rural atmospheric boundary layer in a wind tunnel. The model obstacles covered a range of heights, widths, depths, and roof pitches typical of rural buildings. A field experiment was conducted using three unique full scale obstacles to validate model predictions and wind tunnel measurements. The accuracy of the neural network model varies with the quantity predicted and position in the obstacle wake. In general, predictions of mean velocity deficit in the far wake region are most accurate. The overall estimated mean uncertainties associated with model predictions of normalized mean wind speed and turbulence intensity are 4.9% and 12.8%, respectively.

알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발 (Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy)

  • 박영환;이세헌
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

신경망과 퍼지 알고리즘을 이용한 하천 수질예측 (Water Quality Forecasting of River using Neural Network and Fuzzy Algorithm)

  • 이경훈;강일환;문병석;박진금
    • 환경영향평가
    • /
    • 제14권2호
    • /
    • pp.55-62
    • /
    • 2005
  • This study applied the Neural Network and Fuzzy theory to show water-purity control and preventive measure in water quality forecasting of the future river. This study picked out NAJU and HAMPYUNG as the subject of investigation and used monthly the water quality and the outflow data of KWANGJU2, NAJU, YOUNGSANNPO and HAMPYUNG from 1995 to 1999 to forecast BOD, COD, T-N, T-P water density. The datum from 1995 to 1999 are used for study and that of 2000 are used for verification. To develop model of water quality forecasting, firstly, this research formed Neural Network model and divided Neural Network model into two case - the case of considering lag and not considering. And this study selected optimal Neural Network model through changing the number of hidden layer based on input layer(n) from n to 3n. Through forecasting result, the case without considering lag showed more precise simulated result. Accordingly, this study intended to compare, analyse that Fuzzy model using the method without considering lag with Neural Network model. As a result, this study found that the model without considering lag in Neural Network Network shows the most excellent outcome. Thus this study examined a forecasting accuracy, analyzed result and verified propriety through appling the method of water quality forecasting using Neural Network and Fuzzy Algorithms to the actual case.

뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구 (Artificial neural network for classifying with epilepsy MEG data)

  • 한유진;김준식;김재희
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.139-155
    • /
    • 2024
  • 본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.29-37
    • /
    • 2023
  • 기후변화로 인해 농작물 생산과 유통에 관한 관심이 증대되고 있고, 빅데이터와 AI를 활용한 생산량 예측을 통해 농가의 출하량 조절과 유통단계의 조절에 활용하는 시도가 이루어지고 있다. 농산물 반입량 예측은 가격에 영향을 미칠 뿐 아니라 농가의 출하량과 유통회사의 유통량 조절을 할 수 있으므로 마케팅 전략을 수립하는데 중요한 정보이다. 본 연구에서는 농업 통계 정보 시스템에서 공개한 도매시장 참외 반입량 데이터를 기반으로 미래의 반입량을 예측하는 인공지능 예측 모델을 생성하고 정확도를 평가한다. 우리는 Neural Prophet 기법과 Ensembled Neural Prophet 모델 그리고 GRU 모델 등 세 가지 모델을 사용하여 예측 모델을 생성한다. 모델의 성능은 MAE와 RMSE라는 두 가지 주요 지표를 비교하여 평가한 결과 Ensembled Neural Prophet 모델이 가장 정확하게 예측하였으며, GRU 모델도 앙상블 모델과 유사한 성능을 보여주고 있다. 본 연구에서 개발된 모형은 웹에 publish 되어 현장에서 1년 6개월 동안 사용하고 있으며, 가까운 미래의 참외 생산량을 예측하고, 마케팅 및 유통전략을 수립하는 데 활용되고 있다.

웨이블릿 패킷변환과 신경망을 결합한 하천수위 예측모델 (River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network)

  • 서영민
    • 한국환경과학회지
    • /
    • 제24권8호
    • /
    • pp.1023-1036
    • /
    • 2015
  • A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.