지역빈도해석은 대상 지점과 수문학적 동질성을 만족하는 주변 지점을 하나의 지역으로 보고 빈도해석을 수행하는 방법이다. 따라서 동질한 지역의 구분은 지역빈도해석에 있어서 가장 중요한 가정이라고 할 수 있다. 이에 본 연구에서는 인공신경망 기법중 하나인 자기조직화지도(self-organizing map, SOM) 기법을 활용하여 강우 지역빈도해석을 위한 동질 강수 지역을 구분하였다. 지역구분 인자로는 지형 정보와 시 단위 강우 자료를 활용하였다. 최적 SOM 지도 구성을 위해 정량적 오차와 위상관계 오차를 활용하였다. 그 결과 $7{\times}6$ 배열의 42개의 노드를 갖는 모형을 선정하였고 최종적으로 강우 지역빈도해석을 위해 6개의 군집으로 구분하였다. 동질성 검토 결과 6개의 군집 모두 동질한 지역으로 나타났으며 기존의 유사하게 구분된 지역들과 이질성 척도를 비교하였을 때 좀 더 안정적인 지역 구분결과를 나타내는 것을 확인하였다.
음성 변환은 다양한 음성 처리 응용에 적용될 수 있으며, 음성 인식을 위한 학습 데이터 증강에도 중요한 역할을 할 수 있다. 기존의 방법은 음성 합성을 이용하여 음성 변환을 수행하는 구조를 사용하여 멜 필터뱅크가 중요한 파라미터로 활용된다. 멜 필터뱅크는 뉴럴 네트워크 학습의 편리성 및 빠른 연산 속도를 제공하지만, 자연스러운 음성파형을 생성하기 위해서는 보코더를 필요로 한다. 또한, 이 방법은 음성 인식을 위한 다양한 데이터를 얻는데 효과적이지 않다. 이 문제를 해결하기 위해 본 논문은 원형 스펙트럼을 사용하여 음성 신호 자체의 변환을 시도하였고, 어텐션 메커니즘으로 스펙트럼 성분 사이의 관계를 효율적으로 찾아내어 변환을 위한 자질을 학습할 수 있는 transformer 네트워크 기반 딥러닝 구조를 제안하였다. 영어 숫자로 구성된 TIDIGITS 데이터를 사용하여 개별 숫자 변환 모델을 학습하였고, 연속 숫자 음성 변환 디코더를 통한 결과를 평가하였다. 30명의 청취 평가자를 모집하여 변환된 음성의 자연성과 유사성에 대해 평가를 진행하였고, 자연성 3.52±0.22 및 유사성 3.89±0.19 품질의 성능을 얻었다.
최근 초고속 인터넷과 대용량 데이터베이스 기술의 발전으로 웹 문서의 양이 크게 증가하였으며, 이를 효과적으로 관리하기 위하여 문서의 주제별 자동 분류가 중요한 문제로 대두되고 있다. 본 연구에서는 한글 형태소 및 키워드 분석에 기초한 문서 특성 추출 방법을 제안하고, 이를 이용하여 웹 문서와 같은 비구조적 문서의 주제를 예측하여 문서를 자동으로 분류하는 방법을 제시한다. 먼저, 문서 특성 추출을 위하여 한글 형태소 분석기를 사용하여 용어를 선별하고, 각 용어의 빈도와 주제 분별력을 기초로 주제 분별 용어인 키워드 집합을 생성한 후, 각 키워드에 대하여 주제 분별력에 따라 점수화한다. 다음으로, 추출된 문서 특성을 기초로 상용 소프트웨어를 사용하여 의사 결정 트리, 신경망 및 SVM의 세 가지 분류 모델을 생성하였다. 실험 결과, 제안한 특성 추출 방법을 이용한 문서 분류는 의사 결정 트리 모델의 경우 평균 Precision 0.90 및 Recall 0.84 로 상당한 정도의 분류 성능을 보여 주었다.
Activities of nanostructure HZSM-5 and Co-ZSM-5 catalysts (with different Co-loading) for catalytic conversion of ethyl acetate and toluene were studied. The catalysts were prepared by wet impregnation method and were characterized by XRD, BET, SEM, TEM and ICP-AES techniques. Catalytic studies were carried out inside a U-shaped fixed bed reactor under atmospheric pressure and different temperatures. Toluene showed lower reactivity than ethyl acetate for conversion on Co-ZSM-5 catalysts. The effect of Co loading on conversion was prominent at temperatures below $400^{\circ}C$ and $450^{\circ}C$ for ethyl acetate and toluene respectively. In a binary mixture of organic compounds, toluene and ethyl acetate showed an inhibition and promotional behaviors respectively, in which the conversion of toluene was decreased at temperatures above $350^{\circ}C$. Inhibition effect of water vapor was negligible at temperatures above $400^{\circ}C$. An artificial neural networks model was developed to predict the conversion efficiency of ethyl acetate on Co-ZSM-5 catalysts based on experimental data. Predicted results showed a good agreement with experimental results. ANN modeling predicted the order of studied variable effects on ethyl acetate conversion, which was as follows: reaction temperature (50%) > ethyl acetate inlet concentration (25.085%) > content of Co loading (24.915%).
Choi, Jung-Kyoung;Park, Sang-Yoon;Kim, Kil Hwan;Park, So Ra;Lee, Seok-Geun;Choi, Byung Hyune
BMB Reports
/
제47권12호
/
pp.679-684
/
2014
GM-CSF plays a role in the nervous system, particularly in cases of injury. A therapeutic effect of GM-CSF has been reported in rat models of various central nervous system injuries. We previously showed that GM-CSF could enhance long-term recovery in a rat spinal cord injury model, inhibiting glial scar formation and increasing the integrity of axonal structure. Here, we investigated molecular the mechanism(s) by which GM-CSF suppressed glial scar formation in an in vitro system using primary astrocytes treated with TGF-${\beta}$. GM-CSF repressed the expression of chondroitin sulfate proteoglycan (CSPG) core proteins in astrocytes treated with TGF-${\beta}$. GM-CSF also inhibited the TGF-${\beta}$-induced Rho-ROCK pathway, which is important in CSPG expression. Finally, the inhibitory effect of GM-CSF was blocked by a JAK inhibitor. These results may provide the basis for GM-CSF's effects in glial scar inhibition and ultimately for its therapeutic effect on neural cell injuries.
Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
Smart Structures and Systems
/
제22권4호
/
pp.413-424
/
2018
The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.
본 연구는 인삼과 산양삼에 대해 아무런 정보가 없는 초보 소비자가 인삼을 산양삼이라 여기는 사기 상황을 방지하는 차원에서 산양삼 형태에 대한 기저수준을 확립하려했다. 이를 위해 연구자들은 소비자가 스마트폰의 전용 APP으로 인삼을 촬영하면 그 사진이 원격으로 전송되어, 기계학습데이터를 기반으로 판별한 결과가 소비자에게 전송되는 서비스디자인을 고안했다. 연구과정에서의 데이터 셋과 소비자들이 스마트폰을 통해 촬영했을 때의 배경색, 산양삼의 위치, 크기, 조도, 색온도 등과의 차이를 최소화 하기 위해 소비자 용 전용 촬영 박스를 디자인 했다. 이에 따라 산양삼 샘플 수집은 디자인된 박스와 동일한 통제된 환경과 세팅 하에서 이루어졌다. 이를 통해 기계학습에서 통상 필요한 것 보다 약 1/10이 적은 샘플을 사용해 CNN(VGG16)모델에서 예측 확율 100%를 얻었다.
Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
농업과학연구
/
제47권3호
/
pp.633-644
/
2020
Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.
본 논문에서는 자동으로 사용자의 얼굴 표정을 인식할 수 있는 시스템을 제안한다. 제안된 시스템은 휴리스틱 정보를 기반으로 설계된 트리 구조를 이용하여 행복, 역겨움, 놀람의 감정과 무표정을 인식한다. 카메라로부터 영상이 들어오면 먼저 얼굴 특징 검출기에서 피부색 모델과 연결성분 분석을 이용하여 얼굴 영역을 획득한다. 그 후에 신경망 기반의 텍스처 분류기를 사용하여 눈 영역과 비 눈 영역으로 구분한 뒤 눈의 중심 영역과 에지 정보를 기반으로 하여 눈, 눈썹, 입 등의 얼굴 특징을 찾는다. 검출된 얼굴 특징들은 얼굴 표정 인식기에 사용되며 얼굴 인식기는 이를 기반으로 한 decision tree를 이용하여 얼굴 감정을 인식한다. 제안된 방법의 성능을 평가하기 위해 MMI JAFFE, VAK DB에서 총 180장의 이미지를 사용하여 테스트하였고 약 93%의 정확도를 보였다.
Jeong, Jin Kwon;Kim, Jae Geun;Kim, Han Rae;Lee, Tae Hwan;Park, Jeong Woo;Lee, Byung Ju
Molecules and Cells
/
제40권3호
/
pp.186-194
/
2017
A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.