• 제목/요약/키워드: Neural Model

검색결과 5,505건 처리시간 0.037초

Self-organizing map을 이용한 강우 지역빈도해석의 지역구분 및 적용성 검토 (Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea)

  • 안현준;신주영;정창삼;허준행
    • 한국수자원학회논문집
    • /
    • 제51권5호
    • /
    • pp.383-393
    • /
    • 2018
  • 지역빈도해석은 대상 지점과 수문학적 동질성을 만족하는 주변 지점을 하나의 지역으로 보고 빈도해석을 수행하는 방법이다. 따라서 동질한 지역의 구분은 지역빈도해석에 있어서 가장 중요한 가정이라고 할 수 있다. 이에 본 연구에서는 인공신경망 기법중 하나인 자기조직화지도(self-organizing map, SOM) 기법을 활용하여 강우 지역빈도해석을 위한 동질 강수 지역을 구분하였다. 지역구분 인자로는 지형 정보와 시 단위 강우 자료를 활용하였다. 최적 SOM 지도 구성을 위해 정량적 오차와 위상관계 오차를 활용하였다. 그 결과 $7{\times}6$ 배열의 42개의 노드를 갖는 모형을 선정하였고 최종적으로 강우 지역빈도해석을 위해 6개의 군집으로 구분하였다. 동질성 검토 결과 6개의 군집 모두 동질한 지역으로 나타났으며 기존의 유사하게 구분된 지역들과 이질성 척도를 비교하였을 때 좀 더 안정적인 지역 구분결과를 나타내는 것을 확인하였다.

Transformer 네트워크를 이용한 음성신호 변환 (Voice-to-voice conversion using transformer network)

  • 김준우;정호영
    • 말소리와 음성과학
    • /
    • 제12권3호
    • /
    • pp.55-63
    • /
    • 2020
  • 음성 변환은 다양한 음성 처리 응용에 적용될 수 있으며, 음성 인식을 위한 학습 데이터 증강에도 중요한 역할을 할 수 있다. 기존의 방법은 음성 합성을 이용하여 음성 변환을 수행하는 구조를 사용하여 멜 필터뱅크가 중요한 파라미터로 활용된다. 멜 필터뱅크는 뉴럴 네트워크 학습의 편리성 및 빠른 연산 속도를 제공하지만, 자연스러운 음성파형을 생성하기 위해서는 보코더를 필요로 한다. 또한, 이 방법은 음성 인식을 위한 다양한 데이터를 얻는데 효과적이지 않다. 이 문제를 해결하기 위해 본 논문은 원형 스펙트럼을 사용하여 음성 신호 자체의 변환을 시도하였고, 어텐션 메커니즘으로 스펙트럼 성분 사이의 관계를 효율적으로 찾아내어 변환을 위한 자질을 학습할 수 있는 transformer 네트워크 기반 딥러닝 구조를 제안하였다. 영어 숫자로 구성된 TIDIGITS 데이터를 사용하여 개별 숫자 변환 모델을 학습하였고, 연속 숫자 음성 변환 디코더를 통한 결과를 평가하였다. 30명의 청취 평가자를 모집하여 변환된 음성의 자연성과 유사성에 대해 평가를 진행하였고, 자연성 3.52±0.22 및 유사성 3.89±0.19 품질의 성능을 얻었다.

한글 형태소 및 키워드 분석에 기반한 웹 문서 분류 (Web Document Classification Based on Hangeul Morpheme and Keyword Analyses)

  • 박단호;최원식;김홍조;이석룡
    • 정보처리학회논문지D
    • /
    • 제19D권4호
    • /
    • pp.263-270
    • /
    • 2012
  • 최근 초고속 인터넷과 대용량 데이터베이스 기술의 발전으로 웹 문서의 양이 크게 증가하였으며, 이를 효과적으로 관리하기 위하여 문서의 주제별 자동 분류가 중요한 문제로 대두되고 있다. 본 연구에서는 한글 형태소 및 키워드 분석에 기초한 문서 특성 추출 방법을 제안하고, 이를 이용하여 웹 문서와 같은 비구조적 문서의 주제를 예측하여 문서를 자동으로 분류하는 방법을 제시한다. 먼저, 문서 특성 추출을 위하여 한글 형태소 분석기를 사용하여 용어를 선별하고, 각 용어의 빈도와 주제 분별력을 기초로 주제 분별 용어인 키워드 집합을 생성한 후, 각 키워드에 대하여 주제 분별력에 따라 점수화한다. 다음으로, 추출된 문서 특성을 기초로 상용 소프트웨어를 사용하여 의사 결정 트리, 신경망 및 SVM의 세 가지 분류 모델을 생성하였다. 실험 결과, 제안한 특성 추출 방법을 이용한 문서 분류는 의사 결정 트리 모델의 경우 평균 Precision 0.90 및 Recall 0.84 로 상당한 정도의 분류 성능을 보여 주었다.

Gas Phase Oxidation of Toluene and Ethyl Acetate over Proton and Cobalt Exchanged ZSM-5 Nano Catalysts- Experimental Study and ANN Modeling

  • Hosseini, Seyed Ali;Niaei, Aligholi;Salari, Dariush;Jodaei, Azadeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.808-814
    • /
    • 2010
  • Activities of nanostructure HZSM-5 and Co-ZSM-5 catalysts (with different Co-loading) for catalytic conversion of ethyl acetate and toluene were studied. The catalysts were prepared by wet impregnation method and were characterized by XRD, BET, SEM, TEM and ICP-AES techniques. Catalytic studies were carried out inside a U-shaped fixed bed reactor under atmospheric pressure and different temperatures. Toluene showed lower reactivity than ethyl acetate for conversion on Co-ZSM-5 catalysts. The effect of Co loading on conversion was prominent at temperatures below $400^{\circ}C$ and $450^{\circ}C$ for ethyl acetate and toluene respectively. In a binary mixture of organic compounds, toluene and ethyl acetate showed an inhibition and promotional behaviors respectively, in which the conversion of toluene was decreased at temperatures above $350^{\circ}C$. Inhibition effect of water vapor was negligible at temperatures above $400^{\circ}C$. An artificial neural networks model was developed to predict the conversion efficiency of ethyl acetate on Co-ZSM-5 catalysts based on experimental data. Predicted results showed a good agreement with experimental results. ANN modeling predicted the order of studied variable effects on ethyl acetate conversion, which was as follows: reaction temperature (50%) > ethyl acetate inlet concentration (25.085%) > content of Co loading (24.915%).

GM-CSF reduces expression of chondroitin sulfate proteoglycan (CSPG) core proteins in TGF-β-treated primary astrocytes

  • Choi, Jung-Kyoung;Park, Sang-Yoon;Kim, Kil Hwan;Park, So Ra;Lee, Seok-Geun;Choi, Byung Hyune
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.679-684
    • /
    • 2014
  • GM-CSF plays a role in the nervous system, particularly in cases of injury. A therapeutic effect of GM-CSF has been reported in rat models of various central nervous system injuries. We previously showed that GM-CSF could enhance long-term recovery in a rat spinal cord injury model, inhibiting glial scar formation and increasing the integrity of axonal structure. Here, we investigated molecular the mechanism(s) by which GM-CSF suppressed glial scar formation in an in vitro system using primary astrocytes treated with TGF-${\beta}$. GM-CSF repressed the expression of chondroitin sulfate proteoglycan (CSPG) core proteins in astrocytes treated with TGF-${\beta}$. GM-CSF also inhibited the TGF-${\beta}$-induced Rho-ROCK pathway, which is important in CSPG expression. Finally, the inhibitory effect of GM-CSF was blocked by a JAK inhibitor. These results may provide the basis for GM-CSF's effects in glial scar inhibition and ultimately for its therapeutic effect on neural cell injuries.

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.413-424
    • /
    • 2018
  • The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

불법 산양삼 검출을 위한 인공지능 기술에서의 산양삼과 인삼 이미지의 분류 기저화 연구 (A Study on Basalization of the Classification in Mountain Ginseng and Plain Ginseng Images in Artificial Intelligence Technology for the Detection of Illegal Mountain Ginseng)

  • 박수경;나호준;김지혜
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.209-225
    • /
    • 2020
  • 본 연구는 인삼과 산양삼에 대해 아무런 정보가 없는 초보 소비자가 인삼을 산양삼이라 여기는 사기 상황을 방지하는 차원에서 산양삼 형태에 대한 기저수준을 확립하려했다. 이를 위해 연구자들은 소비자가 스마트폰의 전용 APP으로 인삼을 촬영하면 그 사진이 원격으로 전송되어, 기계학습데이터를 기반으로 판별한 결과가 소비자에게 전송되는 서비스디자인을 고안했다. 연구과정에서의 데이터 셋과 소비자들이 스마트폰을 통해 촬영했을 때의 배경색, 산양삼의 위치, 크기, 조도, 색온도 등과의 차이를 최소화 하기 위해 소비자 용 전용 촬영 박스를 디자인 했다. 이에 따라 산양삼 샘플 수집은 디자인된 박스와 동일한 통제된 환경과 세팅 하에서 이루어졌다. 이를 통해 기계학습에서 통상 필요한 것 보다 약 1/10이 적은 샘플을 사용해 CNN(VGG16)모델에서 예측 확율 100%를 얻었다.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

HCI를 위한 트리 구조 기반의 자동 얼굴 표정 인식 (Automatic Facial Expression Recognition using Tree Structures for Human Computer Interaction)

  • 신윤희;주진선;김은이;;;박세현;정기철
    • 한국산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.60-68
    • /
    • 2007
  • 본 논문에서는 자동으로 사용자의 얼굴 표정을 인식할 수 있는 시스템을 제안한다. 제안된 시스템은 휴리스틱 정보를 기반으로 설계된 트리 구조를 이용하여 행복, 역겨움, 놀람의 감정과 무표정을 인식한다. 카메라로부터 영상이 들어오면 먼저 얼굴 특징 검출기에서 피부색 모델과 연결성분 분석을 이용하여 얼굴 영역을 획득한다. 그 후에 신경망 기반의 텍스처 분류기를 사용하여 눈 영역과 비 눈 영역으로 구분한 뒤 눈의 중심 영역과 에지 정보를 기반으로 하여 눈, 눈썹, 입 등의 얼굴 특징을 찾는다. 검출된 얼굴 특징들은 얼굴 표정 인식기에 사용되며 얼굴 인식기는 이를 기반으로 한 decision tree를 이용하여 얼굴 감정을 인식한다. 제안된 방법의 성능을 평가하기 위해 MMI JAFFE, VAK DB에서 총 180장의 이미지를 사용하여 테스트하였고 약 93%의 정확도를 보였다.

  • PDF

A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats

  • Jeong, Jin Kwon;Kim, Jae Geun;Kim, Han Rae;Lee, Tae Hwan;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.186-194
    • /
    • 2017
  • A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.