• Title/Summary/Keyword: Neural Mechanism

Search Result 520, Processing Time 0.031 seconds

Gait synthesis of a biped robot using reinforcement learning (Reinforcement 학습을 이용한 두발 로보트의 보행 자세 교정)

  • Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1228-1230
    • /
    • 1996
  • A neural network(NN) mechanism is proposed to modify the gait of a biped robot that walks on sloping surface using sensory inputs. The robot starts walking on a surface with no priori knowledge of the inclination of the surface. By accumulating experience during walking, the robot improves its walking gait and finally forms a gait that is adapted to the surface inclination. A neural controller is proposed to control the gait which has 72 reciprocally inhibited and excited neurons. PI control is used for position control, and the neurons are trained by a reinforcement learning mechanism. Experiments of static gait learning and pseudo dynamic learning are performed to show the validity of the proposed reinforcement learning mechanism.

  • PDF

Path-Based Computation Encoder for Neural Architecture Search

  • Yang, Ying;Zhang, Xu;Pan, Hu
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.188-196
    • /
    • 2022
  • Recently, neural architecture search (NAS) has received increasing attention as it can replace human experts in designing the architecture of neural networks for different tasks and has achieved remarkable results in many challenging tasks. In this study, a path-based computation neural architecture encoder (PCE) was proposed. Our PCE first encodes the computation of information on each path in a neural network, and then aggregates the encodings on all paths together through an attention mechanism, simulating the process of information computation along paths in a neural network and encoding the computation on the neural network instead of the structure of the graph, which is more consistent with the computational properties of neural networks. We performed an extensive comparison with eight encoding methods on two commonly used NAS search spaces (NAS-Bench-101 and NAS-Bench-201), which included a comparison of the predictive capabilities of performance predictors and search capabilities based on two search strategies (reinforcement learning-based and Bayesian optimization-based) when equipped with different encoders. Experimental evaluation shows that PCE is an efficient encoding method that effectively ranks and predicts neural architecture performance, thereby improving the search efficiency of neural architectures.

A neural network controller based on forward modeling and indirect learning (순방향 모델링과 간접학습에 의한 신경망제어기)

  • 이부환;이인수;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.218-223
    • /
    • 1992
  • This paper describes a learning method of neural network controllers. The learning method improves the performance of indirect learning mechanism in the neuro-control of nonlinear systems. To precisely identify dynamic characteristics of the plant by utilizing a limited prior information we propose a new energy function which takes advantage of the proportional relationship between outputs of the plant and those of neural networks.

  • PDF

Data Server Mining applied Neural Networks in Distributed Environment (분산 환경에서 신경망을 응용한 데이터 서버 마이닝)

  • 박민기;김귀태;이재완
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.473-476
    • /
    • 2003
  • Nowaday, Internet is doing the role of a large distributed information service tenter and various information and database servers managing it are in distributed network environment. However, the we have several difficulties in deciding the server to disposal input data depending on data properties. In this paper, we designed server mining mechanism and Intellectual data mining system architecture for the best efficiently dealing with input data pattern by using neural network among the various data in distributed environment. As a result, the new input data pattern could be operated after deciding the destination server according to dynamic binding method implemented by neural network. This mechanism can be applied Datawarehous, telecommunication and load pattern analysis, population census analysis and medical data analysis.

  • PDF

Junctional Neural Tube Defect

  • Eibach, Sebastian;Pang, Dachling
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • Junctional neurulation represents the most recent adjunct to the well-known sequential embryological processes of primary and secondary neurulation. While its exact molecular processes, occurring at the end of primary and the beginning of secondary neurulation, are still being actively investigated, its pathological counterpart -junctional neural tube defect (JNTD)- had been described in 2017 based on three patients whose well-formed secondary neural tube, the conus, is widely separated from its corresponding primary neural tube and functionally disconnected from corticospinal control from above. Several other cases conforming to this bizarre neural tube arrangement have since appeared in the literature, reinforcing the validity of this entity. The cardinal clinical, neuroimaging, and electrophysiological features of JNTD, and the hypothesis of its embryogenetic mechanism, form part of this review.

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.

Symbolizing Numbers to Improve Neural Machine Translation (숫자 기호화를 통한 신경기계번역 성능 향상)

  • Kang, Cheongwoong;Ro, Youngheon;Kim, Jisu;Choi, Heeyoul
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1161-1167
    • /
    • 2018
  • The development of machine learning has enabled machines to perform delicate tasks that only humans could do, and thus many companies have introduced machine learning based translators. Existing translators have good performances but they have problems in number translation. The translators often mistranslate numbers when the input sentence includes a large number. Furthermore, the output sentence structure completely changes even if only one number in the input sentence changes. In this paper, first, we optimized a neural machine translation model architecture that uses bidirectional RNN, LSTM, and the attention mechanism through data cleansing and changing the dictionary size. Then, we implemented a number-processing algorithm specialized in number translation and applied it to the neural machine translation model to solve the problems above. The paper includes the data cleansing method, an optimal dictionary size and the number-processing algorithm, as well as experiment results for translation performance based on the BLEU score.

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF