• Title/Summary/Keyword: Neural Image Analysis

Search Result 406, Processing Time 0.022 seconds

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF

Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models (인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류)

  • K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this study, five artificial intelligence (AI) models: Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc were used to classify tea leaf diseases. Eight image categories were used: healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot. Software used in this study was Orange 3 which functions as a Python library for visual programming, that operates through an interface that generates workflows to visually manipulate and analyze the data. The precision of each AI model was recorded to select the ideal AI model. All models were trained using the Adam solver, rectified linear unit activation function, 100 neurons in the hidden layers, 200 maximum number of iterations in the neural network, and 0.0001 regularizations. To extend the functionality of Orange 3, new add-ons can be installed and, this study image analytics add-on was newly added which is required for image analysis. For the training model, the import image, image embedding, neural network, test and score, and confusion matrix widgets were used, whereas the import images, image embedding, predictions, and image viewer widgets were used for the prediction. Precisions of the neural networks of the five AI models (Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc) were 0.807, 0.901, 0.780, 0.800, and 0.771, respectively. Finally, the SqueezeNet (local) model was selected as the optimal AI model for the detection of tea diseases using tea leaf images owing to its high precision and good performance throughout the confusion matrix.

Study of Identification of Lubricant Condition for Hydraulic Member (유압구동 부재의 마찰 상태 식별에 관한 연구)

  • Gang, In-Hyeok;Ryu, Mi-Ra;Park, Jae-Sang;Park, Heung-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.193-199
    • /
    • 2002
  • Analyzing working conditions with shape characteristics of wear debris in a lubricated machine, it can be effect on diagnosis of hydraulic machining system. And it can be recognized that results are processed threshold images of wear debris. But, in order to predict and estimate a working condition of lubricated machine, it is need to analysis a shape characteristic of wear debris and to identify. Therefor, If shape characteristics of wear debris are identified by computer image analysis and the neural network, it is possible to find the cause and effect of wear condition. In this stud)r, wear debris in the lubricant oil are extracted by membrane filter $(0.45{\mu}m)$, and the quantitative value of shape characteristic of wear debris are calculated by the digital image processing. This morphological information are studied and identified by tile artificial neural network. The purpose of this study is to apply morphological characteristic of wear debris to prediction and estimation of working condition in hydraulic machining systems.

  • PDF

The analysis of EEG under color stimulation and the quantization of emotion using learning neural network (색 자극에 대한 뇌전위 분석과 신경망 학습을 통한 인간 감성의 정량화에 관한 연구)

  • 김희선;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1628-1630
    • /
    • 1997
  • The purpose of this study is to see the method of the analysis of EEG(Electroencephalography) whcih is a nonlinear system, to quantize human emotion under color stimulation using the analysis of EEG. The result of this study would be used clinical study and development fo image instruments with color. In this study, the method of the analysis of EEG is power spectrum using FFT(Fast Fourier Transform) and the modelling of EEG under color stimulation base on back propagation Neural Networks ond of AI(Artfical Intellignece) skills. First, input layer make a match to relative power which get analyzing s in 4 channels, and output layer make a match to color stimulation which is measured human emotion. Finally, weights of each neurons determine by learing back porpagation Neural Networks.

  • PDF

Development of Road-Following Controller for Autonomous Vehicle using Relative Similarity Modular Network (상대분할 신경회로망에 의한 자율주행차량 도로추적 제어기의 개발)

  • Ryoo, Young-Jae;Lim, Young-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.550-557
    • /
    • 1999
  • This paper describes a road-following controller using the proposed neural network for autonomous vehicle. Road-following with visual sensor like camera requires intelligent control algorithm because analysis of relation from road image to steering control is complex. The proposed neural network, relative similarity modular network(RSMN), is composed of some learning networks and a partitioniing network. The partitioning network divides input space into multiple sections by similarity of input data. Because divided section has simlar input patterns, RSMN can learn nonlinear relation such as road-following with visual control easily. Visual control uses two criteria on road image from camera; one is position of vanishing point of road, the other is slope of vanishing line of road. The controller using neural network has input of two criteria and output of steering angle. To confirm performance of the proposed neural network controller, a software is developed to simulate vehicle dynamics, camera image generation, visual control, and road-following. Also, prototype autonomous electric vehicle is developed, and usefulness of the controller is verified by physical driving test.

  • PDF

Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim Jong-Ho;Kim Sang-Kyoon;Shin Bum-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2006
  • In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

  • PDF

Human Behavior Analysis and Remote Emergency Detection System Using the Neural Network (신경망을 이용한 동작분석과 원격 응급상황 검출 시스템)

  • Lee Dong-Gyu;Lee Ki-Jung;Lim Hyuk-Kyu;WhangBo Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.50-59
    • /
    • 2006
  • This paper proposes an automatic video monitoring system and its application to emergency detection by analyzing human behavior using neural network. The object area is identified by subtracting the statistically constructed background image from the input image. The identified object area then is transformed to the feature vector. Neural network has been adapted for analyzing the human behavior using the feature vector, and is designed to classify the behavior in rather simple numerical calculation. The system proposed in this paper is able to classify the three human behavior: stand, faint, and squat. Experiment results shows that the proposed algorithm is very efficient and useful in detecting the emergency situation.

  • PDF

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

A Study on the Analysis of Structural Textures using CNN (Convolution Neural Network) (합성곱신경망을 이용한 구조적 텍스처 분석연구)

  • Lee, Bongkyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.201-205
    • /
    • 2020
  • The structural texture is defined as a form which a texel is regularly repeated in the texture. Structural texture analysis/recognition has various industrial applications, such as automatic inspection of textiles, automatic testing of metal surfaces, and automatic analysis of micro images. In this paper, we propose a Convolution Neural Network (CNN) based system for structural texture analysis. The proposed method learns texles, which are components of textures to be classified. Then, this trained CNN recognizes a structural texture using a partial image obtained from input texture. The experiment shows the superiority of the proposed system.