• Title/Summary/Keyword: Neural Image Analysis

Search Result 393, Processing Time 0.034 seconds

Study on Image Compression Algorithm with Deep Learning (딥 러닝 기반의 이미지 압축 알고리즘에 관한 연구)

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.156-162
    • /
    • 2022
  • Image compression plays an important role in encoding and improving various forms of images in the digital era. Recent researches have focused on the principle of deep learning as one of the most exciting machine learning methods to show that it is good scheme to analyze, classify and compress images. Various neural networks are able to adapt for image compressions, such as deep neural networks, artificial neural networks, recurrent neural networks and convolution neural networks. In this review paper, we discussed how to apply the rule of deep learning to obtain better image compression with high accuracy, low loss-ness and high visibility of the image. For those results in performance, deep learning methods are required on justified manner with distinct analysis.

Evaluation of Flower by Neural Network

  • Ikeda, Y.;Sawada, T.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1282-1291
    • /
    • 1993
  • The color image of the rose was segmented by the cluster analysis on the color space into the characteristic sub-regions, the degree of bloom of the flower was represented numerically base on the segmented image and judged by the artificial neural network system whose input variable were the characteristic regions. Judgement by neural system were compared with that of the farmers and it was found that degree of agreement were fairly good.

  • PDF

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

The Generation of SPOT True Color Image Using Neural Network Algorithm

  • Chen, Chi-Farn;Huang, Chih-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.940-942
    • /
    • 2003
  • In an attempt to enhance the visual effect of SPOT image, this study develops a neural network algorithm to transform SPOT false color into simulated true color. The method has been tested using Landsat TM and SPOT images. The qualitative and quantitative comparisons indicate that the striking similarity can be found between the true and simulated true images in terms of the visual looks and the statistical analysis.

  • PDF

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

An efficient learning algorithm of nonlinear PCA neural networks using momentum (모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF

A Study on the Analysis of Temperature Field of Bubbly Flow Using Thermo-sensitive Liquid Crystals (감온액정을 이용한 기포유동의 온도장 해석에 관한 연구)

  • Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1572-1578
    • /
    • 2003
  • Particle Image Thermometry(PIT) with liquid crystal tracers is used for visualizing and analysis of the bubbly flow in a vertical temperature gradient. Quantitative data of the temperature were obtained by applying the color-image processing to a visualized image, and neural-network was applied to the color-to-temperature calibration. This paper describes the method, and presents the transient mixing temperature patterns of the bubbly flow.

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images (사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용)

  • Kim, Jungmoon;Choi, Jee Woong;Kwon, Hyuckjong;Oh, Raegeun;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

A Study on Recognition of Friction Condition for Hydraulic Driving Members using Neural Network

  • Park, Heung-Sik;Seo, Young-Baek;Kim, Dong-Ho;Kang, In-Hyuk
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • It can be effective on failure diagnosis of oil-lubricated tribological system to analyze operating conditions with morphological characteristics of wear debris in a lubricated machine. And it can be recognized that results are processed threshold images of wear debris. But it is needed to analyse and identify a morphology of wear debris in order to predict and estimate a operating condition of the lubricated machine. If the morphological characteristics of wear debris are identified by the computer image analysis and the neural network, it is possible to recognize the friction condition. In this study, wear debris in the lubricating oil are extracted from membrane filter (0.45 ${\mu}m$) and the quantitative value fur shape parameters of wear debris was calculated through the computer image processing. Four shape parameters were investigated and friction condition was recognized very well by the neural network.

Application of Neural Network to Prediction and estimation of Rolling Condition for Hydraulic members (유압구동부재의 구름운동상태 예지 및 판정을 위한 신경 회로망의 적용)

  • 조연상;김동호;박흥식;전태옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.646-649
    • /
    • 2002
  • It can be effect on diagnosis of hydraulic machining system to analyze working conditions with shape characteristics of wear debris in a lubricated machine. But, in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefor, if shape characteristics of wear debris is identified by computer image analysis and the neural network, it is possible to find the cause and effect of moving condition. In this study, wear debris in the lubricant oil are extracted by membrane filter, and the quantitative value of shape characteristics of wear debris we calculated by the digital image processing. This morphological informations are studied and identified by the artificial neural network. The purpose of this study is In apply morphological characteristics of wear debris to prediction and estimation of working condition in hydraulic driving systems.

  • PDF