• Title/Summary/Keyword: Neumann Condition

Search Result 89, Processing Time 0.03 seconds

Numerical Analysis for the Wall Effect in the Two Dimensional Incompressible Flow (이차원 비압축성 유동에서 위벽효과에 대한 수치해석)

  • Kim J. J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.160-166
    • /
    • 1998
  • In this paper, incompressible two-dimensional Navier-Stokes equations are numerically solved for the study of steady laminar flow around a body with the wall effect. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. To investigate the wall effect, numerical computations are carried out for the NACA 0012 section at the various blockage ratios. The pressure and skin friction on the foil surface, velocity pronto in its wake and drag coefficient are investigated as functions of the blockage ratio.

  • PDF

Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow (수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

3-dimensional simulation of field emitter array (Field emitter array의 3차원 시뮬레이션)

  • 정재훈;김영훈;이병호;이종덕
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.100-105
    • /
    • 1997
  • 3-dimensional finite element mehtod (FEM) elecrical field analysis was performed to obtain electric fields on a field emission display (FED) tip in an array form. Because, unlike a single tip structure, there is no azimuthal symmetry for a tip aary, 3D analysis is necessary. To reduce memory requriement the simulatio was performed by applying the neumann boundary condition to the intermediate plane between tips to take the effect of the array on the electric field into account and corresponding current was calculated. To verify our algorithm, comparison between simulation resutls and experimental data from another paper was made and the difference was discussed.

  • PDF

3-dimensional Electric Field Analysis for Field Emission Devices (전계방출소자의 3차원 전계해석)

  • Kim, Yeong-Hoon;Jung, Jae-Hoon;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.662-664
    • /
    • 1997
  • 3-dimensional finite element method(FEM) electrical field analysis was performed to obtain electric fields on a field emission device tip in an array form. The simulation was performed by applying the Neumann boundary condition to the intermediate plane between tips. To verify our algorithm, comparison between simulation results and experimental data from another paper was made and the difference was discussed. Finally, analysis on triode structure was performed.

  • PDF

CHARACTERIZATION OF SEMIGROUPS BY FLAT AUTOMATA

  • Lee, O.;Shin, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.747-756
    • /
    • 1999
  • In ring theory it is well-known that a ring R is (von Neumann) regular if and only if all right R-modules are flat. But the analogous statement for this result does not hold for a monoid S. Hence, in sense of S-acts, Liu (]10]) showed that, as a weak analogue of this result, a monoid S is regular if and only if all left S-acts satisfying condition (E) ([6]) are flat. Moreover, Bulmann-Fleming ([6]) showed that x is a regular element of a monoid S iff the cyclic right S-act S/p(x, x2) is flat. In this paper, we show that the analogue of this result can be held for automata and them characterize regular semigroups by flat automata.

  • PDF

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Lee, Yoon-Weon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1255-1274
    • /
    • 2008
  • The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.

COLLOCATION METHOD USING QUARTIC B-SPLINE FOR NUMERICAL SOLUTION OF THE MODIFIED EQUAL WIDTH WAVE EQUATION

  • Islam, Siraj-Ul;Haq, Fazal-I;Tirmizi, Ikram A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.611-624
    • /
    • 2010
  • A Numerical scheme based on collocation method using quartic B-spline functions is designed for the numerical solution of one-dimensional modified equal width wave (MEW) wave equation. Using Von-Neumann approach the scheme is shown to be unconditionally stable. Performance of the method is validated through test problems including single wave, interaction of two waves and use of Maxwellian initial condition. Using error norms $L_2$ and $L_{\infty}$ and conservative properties of mass, momentum and energy, accuracy and efficiency of the suggested method is established through comparison with the existing numerical techniques.

Global Attractivity and Oscillations in a Nonlinear Impulsive Parabolic Equation with Delay

  • Wang, Xiao;Li, Zhixiang
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.593-611
    • /
    • 2008
  • Global attractivity and oscillatory behavior of the following nonlinear impulsive parabolic differential equation which is a general form of many population models $$\array{\{{{\frac {{\partial}u(t,x)}{{\partial}t}=\Delta}u(t,x)-{\delta}u(t,x)+f(u(t-\tau,x)),\;t{\neq}t_k,\\u(t^+_k,x)-u(t_k,x)=g_k(u(t_k,x)),\;k{\in}I_\infty,}\;\;\;\;\;\;\;\;(*)$$ are considered. Some new sufficient conditions for global attractivity and oscillation of the solutions of (*) with Neumann boundary condition are established. These results no only are true but also improve and complement existing results for (*) without diffusion or impulses. Moreover, when these results are applied to the Nicholson's blowflies model and the model of Hematopoiesis, some new results are obtained.

A REMARK ON INVARIANCE OF QUANTUM MARKOV SEMIGROUPS

  • Choi, Ve-Ni;Ko, Chul-Ki
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.81-93
    • /
    • 2008
  • In [3, 9], using the theory of noncommutative Dirichlet forms in the sense of Cipriani [6] and the symmetric embedding map, authors constructed the KMS-symmetric Markovian semigroup $\{S_t\}_{t{\geq}0}$ on a von Neumann algebra $\cal{M}$ with an admissible function f and an operator $x\;{\in}\;{\cal{M}}$. We give a sufficient and necessary condition for x so that the semigroup $\{S_t\}_{t{\geq}0}$ acts separately on diagonal and off-diagonal operators with respect to a basis and study some results.