• Title/Summary/Keyword: Networked sensor

Search Result 56, Processing Time 0.027 seconds

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

Direct Actuation Update Scheme based on Actuator in Wireless Networked Control System (Wireless Networked Control System에서 Actuator 기반 Direct Actuation Update 방법)

  • Yeunwoong Kyung;Tae-Kook Kim;Youngjun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.125-129
    • /
    • 2023
  • Age of Information (AoI) has been introduced in wireless networked control systems (WNCSs) to guarantee timely status updates. In addition, as the edge computing (EC) architecture has been deployed in NCS, EC close to sensors can be exploited to collect status updates from sensors and provide control decisions to actuators. However, when lots of sensors simultaneously deliver status updates, EC can be overloaded, which cannot satisfy the AoI requirement. To mitigate this problem, this paper uses actuators with computing capability that can directly receive the status updates from sensors and determine the control decision without the help of EC. To analyze the AoI of the actuation update via EC or directly using actuators, this paper developed an analytic model based on timing diagrams. Extensive simulation results are included to verify the analytic model and to show the AoI with various settings.

Fault-tolerant clock synchronization for low-cost networked embedded systems (저비용 네트워크 기반 임베디드 시스템을 위한 시간동기 기술)

  • Lee, Dong-Ik
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.52-61
    • /
    • 2007
  • Networked embedded systems using the smart device and fieldbus technologies are now found in many industrial fields including process automation and automobiles. However the discrepancy between a node's view of current time and the rest of the system can cause many difficulties in the design and implementation of a networked system. To provide a networked system with a global reference time, the problem of clock synchronization has been intensively studied over the decades. However, many of the existing solutions, which are mainly developed for large scale distributed computer systems, cannot be directly applied to embedded systems. This paper presents a fault-tolerant clock synchronization technique that can be used for a low-cost embedded system using a CAN bus. The effectiveness of the proposed method is demonstrated with a set of microcontrollers and DC motor-based actuators.

Exploitation of IP-based Intelligent Networked Measuring and Control Device and System

  • Liu, Gui-Xiong;Luo, Yi;Fang, Xiao-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1235-1239
    • /
    • 2003
  • On the base of network frame and protocol system of Ethernet the networked sensing technology based on Ethernet is studied and the design principles of industrial Ethernet measurement of control system is put forward, and the general structure model is built in the paper. An eight-bit economical MCU scheme is proposed, and a general scheme of distributed intelligent networked measuring and control equipment based on TCP/IP is designed too. A compact TCP/IP protocol stack are successfully implemented in eight-bit MCU. With C51 program language, method of modularized programming is applied in soft design. The problem of in-system modifying measuring and control strategy of its system is solved successfully by assigning memory dynamically and saving parameter with EEPROM, and it makes the intelligent networked measurement and control system can explain and analyses control strategy from PC. Experiment result shows that, the research of intelligent networked measurement and control equipment and system base on TCP/IP is successful, with flexible network, convenient usage, and good commonality.

  • PDF

Decentralized Fuzzy Output Feedback Control of Nonlinear Networked Control Systems for Wireless Sensor Network (무선 센서 네트워크를 위한 비선형 네트워크 제어 시스템의 출력 궤환 분산 퍼지 제어기 설계)

  • Joo, Young-Hoon;Ra, In-Ho;Koo, Geun-Bum;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.323-328
    • /
    • 2009
  • In this paper, a decentralized fuzzy output feedback controller for the nonlinear networked control system is proposed for wireless sensor network. Especially, it is assumed that the networked control system has the output packet loss and the input transmission failure. For the fuzzy control of the nonlinear subsystem, it presents Takagi-Sugeno (T-S) fuzzy model of each subsystem and it designs the decentralized fuzzy output feedback controller. The stability condition of the closed-loop system with the proposed controller is obtained by Lyapunov functional. The obtained stability condition is represented to the linear matrix inequality (LMI) form, and the control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.

Observer-based Intelligent Control of Nonlinear Networked Control Systems with Packet Loss for Wireless Sensor Network (무선 센서 네트워크를 위한 패킷 손실을 포함한 비선형 네트워크 제어 시스템의 관측기 기반 지능 제어기 설계)

  • Ra, In-Ho;Kim, Se-Jin;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2009
  • In this paper, an observer-based intelligent controller for the nonlinear networked control systems with packet loss is proposed for wireless sensor network. For the intelligent control of the nonlinear system, it uses the fuzzy system with Takagi-Sugeno (T-S) fuzzy model. The observer is designed for the fuzzy networked control system, and the output feedback controller is proposed for the stability of estimates and errors. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Networked Robots using ATLAS Service-Oriented Architecture in the Smart Spaces

  • Helal, Sumi;Bose, Raja;Lim, Shin-Young;Kim, Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.288-298
    • /
    • 2008
  • We introduce new type of networked robot, Ubiquitous Robotic Companion (URC), embedded with ATLAS Service-oriented architecture for enhancing the space sensing capability. URC is a network-based robotic system developed by ETRI. For years of experience in deploying service with ATLAS sensor platform for elder and people with special needs in smart houses, we need networked robots to assist elder people in their successful daily living. Recently, pervasive computing technologies reveals possibilities of networked robots in smart spaces, consist of sensors, actuators and smart devices can collaborate with the other networked robot as a mobile sensing platform, a complex and sophisticated actuator and a human interface. This paper provides our experience in designing and implementing system architecture to integrate URC robots in pervasive computing environments using the University of Florida's ATLAS service-oriented architecture. In this paper, we focus on the integrated framework architecture of URC embedded with ATLAS platform. We show how the integrated URC system is enabled to provide better services which enhance the space sensing of URC in the smart space by applying service-oriented architecture characterized as flexibility in adding or deleting service components of Ubiquitous Robotic Companion.

Sensor Network Test Bed Construction using mica2 mote (Mica2 mote를 이용한 센서 네트워크 테스트 베드 구축)

  • 이윤경;박영수;전성익
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.61-64
    • /
    • 2003
  • Technological progress in integrated, low-power, CMOS communication devices and sensors makes a rich design space of networked sensors viable. These sensors can be deeply embedded in the physical world and spread throughout sensor network environment like smart dust. So ubiquitous computing will be come true. SmartDust project is the one of ubiquitous computing approach. It produces TinyOS, mote(mica, mica2, rene2, mica2dot, etc.), NesC, TinyDB, etc. We constructs sensor network test bed and tests to approach sensor network and ubiquitous computing.

  • PDF