• 제목/요약/키워드: Network-based Humanoid

검색결과 30건 처리시간 0.023초

네트워크 기반 휴머노이드에서의 PnP가 가능한 미들웨어 프레임워크 (PnP Supporting Middleware Framework for Network Based Humanoid)

  • 이호동;김동원;김주형;박귀태
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.255-261
    • /
    • 2008
  • This paper describes a network framework that support network based humanoid. The framework utilizes middleware such as CORBA (ACE/TAO) that provides PnP capability for network based humanoid. The network framework transfers data gathered from a network based humanoid to a processing group that is distributed on a network. The data types are video stream, audio stream and control data. Also, the network framework transfers service data produced by the processing group to the network based humanoid. By using this network framework, the network based humanoid can provide high quality of intelligent services to user.

  • PDF

휴머노이드 연구동향 (Survey on Humanoid Researches)

  • 유범재;오용환;최영진
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.15-21
    • /
    • 2004
  • A number of Humanoids are introduced including ASIMO, HRP-2 Promet, Johnniee, Babybot, and KHR-2. Most researches are focused on the development of stable biped walking of Humanoids and it is not easy to endow an Humanoid with intelligence and service technology until now in the sense that the operation time of a Humanoid is limited less than 30 minutes even in the case that the battery is used only for the control of actuators in a Humanoid. In this paper, a brief survey on Humanoids is proposed and the concept of 'Network-based Humanoid', a Humanoid being able to provide intelligence for human-friendly services using ubiquitous networks, is introduced briefly.

이종 다수의 네트워크 기반 휴머노이드를 위한 협조제어 소프트웨어 프레임워크 (Framework of a Cooperative Control Software for Heterogeneous Multiple Network Based Humanoid)

  • 임헌영;강연식;이중재;김종원;유범재
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.226-236
    • /
    • 2008
  • In this paper, control software architecture is designed to enable a heterogeneous multiple humanoid robot demonstration executing tasks cooperating with each other. In the heterogeneous humanoid robot team, one large humanoid robot and two small humanoid robots are included. For the efficient and reliable information sharing between many software components for humanoid control, sensing and planning, CORBA based software framework is applied. The humanoid tasks are given in terms of finite state diagram based human-robot interface, which is interpreted into the XML based languages defining the details of the humanoid mission. A state transition is triggered based on the event which is described in terms of conditions on the sensor measurements such as robot locations and the external vision system. In the demonstration of the heterogeneous humanoid team, the task of multiple humanoid cleaning the table is given to the humanoid robots and successfully executed based on the given state diagram.

  • PDF

피드백을 결합한 CPG 기반의 적응적인 휴머노이드 로봇 보행 (CPG-based Adaptive Walking for Humanoid Robots Combining Feedback)

  • 이재민;서기성
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.683-689
    • /
    • 2014
  • The paper introduces dynamic generation technique of foot trajectories for humanoid robots using CPG(Central Pattern Generator) and proposes adaptive walking method for slope terrains combining a feedback network. The proposed CPG based technique generates the trajectory of foot in the Cartesian coordinates system and it can change the step length adaptively according to the feedback information. To cope with variable slope terrains, the sensory feedback network in the CPG are designed using the geometry relationship between foot position and body center position such that humanoid robot can maintain its stability. To demonstrate the effectiveness of the proposed approach, the experiments on humanoid robot Nao are executed in the Webot simulation. The performance and motion features of the CPG based approach are compared and analyzed focusing on the adaptability in slope terrains.

휴머노이드 로봇의 네트워크 구조 구현 (Implementation of network architecture for a humanoid robot)

  • 성유경;공정식;이보희;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2397-2399
    • /
    • 2004
  • This paper deals with the messages scheduling of a CAN (Controller Area Network), based on the distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to supply the distributed processing for a humanoid robot, each control unit should have the efficient control method, fast calculation and valid data exchange. The preliminary study has concluded that the performance of CAN is better and easier to implement than other network such as FIP (Factory Instrumentation Protocol), VAN (Vehicle Area Network), etc. Since humanoid robot has to treat the significant control signals from many actuators and sensors, the communication time limitation could be critical according to the transmission speed and data length of CAN specification. In this paper, the CAN message scheduling in humanoid robot was suggested under the presence of Jitter in the message group, the existence of high load of messages over the network and the presence of transmission errors. In addition, the response time under the worst case is compared with the simulation by using the simulation algorithm. As a result, the suggested messages scheduling can guarantee our CAN limitation, and utilized to generate the walking patterns for the humanoid.

  • PDF

휴머노이드 로봇의 분산 제어를 위한 네트윅 구현 (Network Realization for a Distributed Control of a Humanoid Robot)

  • 이보희;공정식;김진걸
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.485-492
    • /
    • 2006
  • 본 논문은 휴머노이드 로봇 ISHURO의 분산 제어를 위한 네트웍 구현에 대해 다루고 있다. 일반적으로 휴머노이드형 로봇은 기구학적으로 유연한 동작을 위해 다수의 자유도가 필요하다. 이를 구현하기 위해서는 중앙에서 일괄적으로 처리 하는 것 보다 간결 하면서도 유연성을 줄 수 있는 분산 처리 방법이 선호되고 있다. 분산 처리를 위한 제어기를 구성할 때는 로봇의 모터를 독립적으로 제어하기 위한 제어기가 별도로 필요하며 모듈 간에는 정해진 시간 내에 데이터를 교환할 수 있는 통신 기법이 필요하다. ISHURO의 각 관절은 자체 내에 독립된 DSP를 내장하고 있으며 CAN 네트웍을 이용하여 모듈간의 통신을 하여 구동기를 재어하거나 센서의 값을 모니터링 할 수 있게 되어 있다. 본 논문에서는 이를 위한 통신 구조를 제안하고 필요한 전송 메시지를 정의하고, 전송시간을 분석하여 로봇 분산 제어기 구조에 적절한 전송 프로토콜을 제시하였다. 모든 과정은 Matlab을 이용하여 컴퓨터모의실험을 수행하였고 실제 휴머노이드 로봇에 적용하여 보행실험을 통해 검증 하였다.

Real-time Message Network System for a Humanoid Robot

  • Ahn, Sang-Min;Gong, Jung-Sik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2296-2300
    • /
    • 2005
  • This paper deals with the real-time message network system by a CAN (controller area network) based on the real-time distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to apply the real-time distributed processing for a humanoid robot, each control unit should have the real-time efficient control method, fast sensing method, fast calculation and real-time valid data exchange method. Moreover, the data from sensors and encoders must be transmitted to the higher level of control units in maximum time limit. This paper describes the real-time message network system design and the performance of the system.

  • PDF

무선 센서 네트워크를 이용한 ZMP측정에 의한 휴머노이드 로봇의 걸음새 구현 (The Implementation of Walking for a Humanoid Robot by ZMP measurement using Wireless Sensor Network)

  • 이보희;서규태;황병훈;공정식;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.95-97
    • /
    • 2005
  • This paper deals with the implementation of walking for a humanoid robot by ZMP measurement using wireless sensor network. ZMP is measured by FSR sensors which are mounted at each corner of a sole. The wireless sensor network collects the sensor data according and exchanges robot information between host PC and a robot system. The master controller mounted on robot body receives trajectory data from the host PC via sensor network and drives the joint motor based on trajectory data. The time scheduler of the master controller controls the events at the ratio of 100ms. With this configuration, the walking of the humanoid robot KHR-1 could be realized successfully.

  • PDF

휴머노이드 로봇의 뉴럴네트워크 제어 (Neural Network Control of Humanoid Robot)

  • 김동원;김낙현;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.963-968
    • /
    • 2010
  • This paper handles ZMP based control that is inspired by neural networks for humanoid robot walking on varying sloped surfaces. Humanoid robots are currently one of the most exciting research topics in the field of robotics, and maintaining stability while they are standing, walking or moving is a key concern. To ensure a steady and smooth walking gait of such robots, a feedforward type of neural network architecture, trained by the back propagation algorithm is employed. The inputs and outputs of the neural network architecture are the ZMPx and ZMPy errors of the robot, and the x, y positions of the robot, respectively. The neural network developed allows the controller to generate the desired balance of the robot positions, resulting in a steady gait for the robot as it moves around on a flat floor, and when it is descending slope. In this paper, experiments of humanoid robot walking are carried out, in which the actual position data from a prototype robot are measured in real time situations, and fed into a neural network inspired controller designed for stable bipedal walking.

휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용 (Application of Controller Area Network to Humanoid Robot)

  • 구자봉;허욱열;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF