• Title/Summary/Keyword: Network-based

Search Result 25,959, Processing Time 0.052 seconds

A Study on "On-tact" Christian Education in the Post-Corona Era (포스트 코로나 시대의 "온택트(ontack)" 기독교교육에 관한 연구)

  • Yang, Kum Hee
    • Journal of Christian Education in Korea
    • /
    • v.68
    • /
    • pp.41-76
    • /
    • 2021
  • This paper begins with the question of whether "on-tact" Christian education, which has become the most new-normal phenomenon since Corona 19, will remain as a decisive form of Christian education even in the post-Corona era. In order to answer that question, this study explored whether on-tact Christian education has its own domain of experience and educational elements that cannot be replaced by face-to-face education, specifically focusing on "types of on-tact Christian Education", "discussion of digital church" and "digital epistemology". Through research on "types of onn-tact Christian education," it confirmed that, when viewed on the basis of 'participation' or 'communication', on-tact Christian education has an independent field of experience and educational elements. Through contemplation on "digital ecclesiology", it found that on-tact education is the decisive channel for Christian education to reach digital generation. It also found a new metaphor from the "network" concept for the public church and the Kingdom of God. This paper also found that we experience the perception of the body that is expanded through the combination between the body and technology in the digital world, and that this is a unique epistemology that occurs only in the digital world. Based on the above points, it affirmed that on-tact Christian education is not simply a means of supplementing face-to-face education in the era of COVID-19, but is a Christian education that has an independent field of experience and educational power that face-to-face education cannot replace. Thus it foresees that on-tact Christian education will continue to expand as a center and form of Christian education even in the post-corona era.

Content Diversity Analysis of Elementary Science Authorized Textbooks according to the 2015 Revised Curriculum: Focusing on the "Weight of an Object" Unit (2015 개정 교육과정에 따른 초등 과학 검정 교과서 내용 다양성 분석 - '물체의 무게' 단원을 중심으로 -)

  • Shin, Jung-Yun;Park, Sang-Woo;Jeong, Hyeon-Ji;Hong, Mi-Na;Kim, Hyeon-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.307-324
    • /
    • 2022
  • This study examined the content diversity of seven authorized science textbooks by comparing the characteristics of the science concept description and the contents of inquiry activities in the "weight of objects" unit. For each textbook, the flow of concept description content and the uniqueness of the concept description process were analyzed, and the number of nodes and links and words with high connections were determined using language network analysis. In addition, for the inquiry activities described in each textbook, the inquiry subject, inquiry type, science process skill, and uniqueness were investigated. Results showed that the authorized textbooks displayed no more diversity than expected in their scientific concept description method or their inquiry activity composition. The learning elements, inclusion of subconcepts, and central words were similar for each textbook. The comparison of inquiry activities showed similarities in their contents, inquiry types, and scientific process skills. Specifically, these textbooks did not introduce any research topics or experimental methods that were absent in previous textbooks. However, despite the fact that the authorized textbook system was developed based on the same curriculum, some efforts were made to make use of its strengths. Since the sequence of subconcepts to explain the core contents differed across textbooks, this explanation process was divided into several types, and although the contents of inquiry activities were the same, the materials for inquiry activities were shown differently for each textbook to improve and overcome the difficulties in the existing experiments. These findings necessitate the continuation of efforts to utilize the strengths of certified textbooks.

A Study on the Research Trends on Literacy in Library and Information Science (문헌정보학 분야의 리터러시 연구 동향 분석)

  • Jang, Su Hyun;Nam, Young Joon
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.263-292
    • /
    • 2022
  • The purpose of this study is to identify the topics of research related to the concepts of literacy in the field of Library and Information Science which is related to user education in libraries. Data were collected from the WoS and KCI databases, and complementary keyword analysis and topic modeling analysis techniques were used to identify topics of literature-related research articles in the field of Library and Information Science. Findings presented that there was a difference in keywords and topics between the two databases. Literacy-related topics identified from the KCI database were classified into three groups through topic modeling. Also, it was analyzed that there is a difference between the overall literacy-related research trend, the timing of the surge in research volume, and key frequent keywords in the Library and Information Science field confirmed in the study. In particular, in the study of literacy in all fields, a number of words such as 'literacy', 'education', 'media', and 'digital' were derived. However, in literature research in the field of Library and Information Science, keywords such as 'information utilization ability' and 'school library' appeared. Based on this, it was concluded that research on the ability to develop an evaluative eye for information is needed in line with today's information environment, where information is rapidly increasing in Korea in the future.

A Study on A Deep Learning Algorithm to Predict Printed Spot Colors (딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구)

  • Jun, Su Hyeon;Park, Jae Sang;Tae, Hyun Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

Analyzing Korean Math Word Problem Data Classification Difficulty Level Using the KoEPT Model (KoEPT 기반 한국어 수학 문장제 문제 데이터 분류 난도 분석)

  • Rhim, Sangkyu;Ki, Kyung Seo;Kim, Bugeun;Gweon, Gahgene
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.315-324
    • /
    • 2022
  • In this paper, we propose KoEPT, a Transformer-based generative model for automatic math word problems solving. A math word problem written in human language which describes everyday situations in a mathematical form. Math word problem solving requires an artificial intelligence model to understand the implied logic within the problem. Therefore, it is being studied variously across the world to improve the language understanding ability of artificial intelligence. In the case of the Korean language, studies so far have mainly attempted to solve problems by classifying them into templates, but there is a limitation in that these techniques are difficult to apply to datasets with high classification difficulty. To solve this problem, this paper used the KoEPT model which uses 'expression' tokens and pointer networks. To measure the performance of this model, the classification difficulty scores of IL, CC, and ALG514, which are existing Korean mathematical sentence problem datasets, were measured, and then the performance of KoEPT was evaluated using 5-fold cross-validation. For the Korean datasets used for evaluation, KoEPT obtained the state-of-the-art(SOTA) performance with 99.1% in CC, which is comparable to the existing SOTA performance, and 89.3% and 80.5% in IL and ALG514, respectively. In addition, as a result of evaluation, KoEPT showed a relatively improved performance for datasets with high classification difficulty. Through an ablation study, we uncovered that the use of the 'expression' tokens and pointer networks contributed to KoEPT's state of being less affected by classification difficulty while obtaining good performance.

Trends in disaster safety research in Korea: Focusing on the journal papers of the departments related to disaster prevention and safety engineering

  • Kim, Byungkyu;You, Beom-Jong;Shim, Hyoung-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.43-57
    • /
    • 2022
  • In this paper, we propose a method of analyzing research papers published by researchers belonging to university departments in the field of disaster & safety for the scientometric analysis of the research status in the field of disaster safety. In order to conduct analysis research, the dataset constructed in previous studies was newly improved and utilized. In detail, for research papers of authors belonging to the disaster prevention and safety engineering type department of domestic universities, institution identification, cited journal identification of references, department type classification, disaster safety type classification, researcher major information, KSIC(Korean Standard Industrial Classification) mapping information was reflected in the experimental data. The proposed method has a difference from previous studies in the field of disaster & safety and data set based on related keyword searches. As a result of the analysis, the type and regional distribution of organizations belonging to the department of disaster prevention and safety engineering, the composition of co-authored department types, the researchers' majors, the status of disaster safety types and standard industry classification, the status of citations in academic journals, and major keywords were identified in detail. In addition, various co-occurrence networks were created and visualized for each analysis unit to identify key connections. The research results will be used to identify and recommend major organizations and information by disaster type for the establishment of an intelligent crisis warning system. In order to provide comprehensive and constant analysis information in the future, it is necessary to expand the analysis scope and automate the identification and classification process for data set construction.

A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models (심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 -)

  • Sung-Pil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.93-114
    • /
    • 2023
  • Information extraction can facilitate the intensive analysis of documents by providing semantic triples which consist of named entities and their relations recognized in the texts. However, most of the research so far has been carried out separately for named entity recognition and relation extraction as individual studies, and as a result, the effective performance evaluation of the entire information extraction systems was not performed properly. This paper introduces two models of end-to-end information extraction that can extract various entity names in clinical records and their relationships in the form of semantic triples, namely pipeline and joint models and compares their performances in depth. The pipeline model consists of an entity recognition sub-system based on bidirectional GRU-CRFs and a relation extraction module using multiple encoding scheme, whereas the joint model was implemented with a single bidirectional GRU-CRFs equipped with multi-head labeling method. In the experiments using i2b2/VA 2010, the performance of the pipeline model was 5.5% (F-measure) higher. In addition, through a comparative experiment with existing state-of-the-art systems using large-scale neural language models and manually constructed features, the objective performance level of the end-to-end models implemented in this paper could be identified properly.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.

Stress Constraint Topology Optimization using Backpropagation Method in Design Sensitivity Analysis (설계민감도 해석에서 역전파 방법을 사용한 응력제한조건 위상최적설계)

  • Min-Geun, Kim;Seok-Chan, Kim;Jaeseung, Kim;Jai-Kyung, Lee;Geun-Ho, Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • This papter presents the use of the automatic differential method based on the backpropagation method to obtain the design sensitivity and its application to topology optimization considering the stress constraints. Solving topology optimization problems with stress constraints is difficult owing to singularities, the local nature of stress constraints, and nonlinearity with respect to design variables. To solve the singularity problem, the stress relaxation technique is used, and p-norm for stress constraints is applied instead of local stresses for global stress measures. To overcome the nonlinearity of the design variables in stress constraint problems, it is important to analytically obtain the exact design sensitivity. In conventional topology optimization, design sensitivity is obtained efficiently and accurately using the adjoint variable method; however, obtaining the design sensitivity analytically and additionally solving the adjoint equation is difficult. To address this problem, the design sensitivity is obtained using a backpropagation technique that is used to determine optimal weights and biases in the artificial neural network, and it is applied to the topology optimization with the stress constraints. The backpropagation technique is used in automatic differentiation and can simplify the calculation of the design sensitivity for the objectives or constraint functions without complicated analytical derivations. In addition, the backpropagation process is more computationally efficient than solving adjoint equations in sensitivity calculations.