In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.
International Journal of Fuzzy Logic and Intelligent Systems
/
제1권1호
/
pp.95-103
/
2001
The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.
본 논문에서는 시간지연이 존재하고 시스템의 영점이 단위원 밖에 있으며 시스템 파라미터가 변하는 비선형 시스템에 적응하는 신경회로망을 이용한 PID구조를 갖는 일반화 최소분산 자기동조제어기를 제안한다. 신경회로망은 제어기 파라미터를 추정하며 제어 출력은 추정된 제어기 파라미터로부터 얻어진다. 제어 알고리듬의 타당성을 확인하기 위해 시간 지연이 있고 일정한 시간이 경과한 후 시스템의 파라미터가 변하는 비선형 비최소위상 시스템에 대해 컴퓨터 시뮬레이션을 하였다. 그리고 신경회로망을 이용한 직접 적응 제어기와 비교하였다.
본 논문에서는 다변수 비선형 시스템에 적응할 수 있는 신경회로망을 이용한 직접 다변수 자기동조 제어기를 제안한다. 제어기에 적용되는 플랜트는 고차이고 잡음, 시간지연과 상호결합 항이 존재하며 파라미터가 변하는 다변수 비선형 비최소위상 시스템이다. 비선형성은 전체적인 유계라 가정하며, 시스템은 선형부분과 비선형부분으로 분리한 형태로 구성한다. 다변수 비선형 자기동조 제어기의 제어 출력은 신경회로망으로 직접 추정된 제어기 파라미터로부터 얻어진다. 제어 알고리듬의 타당성을 확인하기 위해 시간지연이 있고 일정한 시간이 경과한 후 시스템의 파라미터가 변하는 고차 다변수 비선형 비최소위상 시스템에 대해 컴퓨터 시뮬레이션을 하였다. 그리고 신경회로망을 이용한 직접 다변수 적응 제어기와 비교하였다.
The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.964-967
/
1993
This paper presents an auto tuning method of fuzzy inference using Genetic Algorithm. The determination of membership functions by human experts is a difficult problem. Therefore, some auto-tuning methods have been proposed to reduce the time-consuming operations. However, the convergence of the tuning by the previous methods depends on the initial conditions of the fuzzy model. So, we proposes an auto tuning method for the fuzzy neural network by Genetic Algorithm (ATF system). This paper shows effectiveness of the ATF system by simulations.
In this paper auto-tuning scheme of PID controller based on the reference model has been studied for a Process control system by immune algorithm. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. Also, a number of approaches have been proposed to implement mixed control structures that combine a PID controller with fuzzy logic. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Since the immune system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (Parallel Distributed Processing) network to complete patterns against the environmental situation. Simulation results reveal that reference model basd tuning by immune network suggested in this paper is an effective approach to search for optimal or near optimal process control.
In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.
The construction of rule-base for a nonlinear time-varying system, becomes much more complicated because of model uncertainty and parameter variations. Furthemore, FLC does not have an ability of adjusting rule- base in responding to some sudden changes of control environments. To cope with these problems, an auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), which is known to be very effective in the optimization problem, will be proposed. The tuning of the proposed system is performed by two tuning processes(the course tuning process and the fine tuning/adaptive learning process). The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.
As many sensors and actuators are used in automated systems, various industrial networks are adopted for digital control system. In order to take advantages of the networking, however, the network implementation should be carefully designed to satisfy real-time requirements considering network delays. This paper presents the implementation scheme of a networked control system via Profibus-DP network. More specifically, the effect of the network delay on the control performance was evaluated on a Profibus-DP testbed, and a GA-based PID tuning algorithm is proposed to design controllers suitable for networked control systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.