• Title/Summary/Keyword: Network structure

Search Result 5,385, Processing Time 0.028 seconds

Policy Change and Innovation of Textile Industry in Daegu·Kyungbuk Region (대구·경북지역 섬유산업의 정책변화와 혁신과제)

  • Shin, Jin-Kyo;Kim, Yo-Han
    • Management & Information Systems Review
    • /
    • v.31 no.3
    • /
    • pp.223-248
    • /
    • 2012
  • This study analyses support policy and structural change of textile industry in Daegu Kyungbuk region, and suggests major issues for textile industry's innovation. In Daegu Kyungbuk, it was 1999 that a policy, so called Milano Project, in order to promote a textile industry was devised. In 2004, the Regional Industrial Promotion Plan was devised. The plan was born from a view point of establishing a regional innovation system and of promoting the innovative clusters under a knowledge based economy. After then, the Regional Industry Promotion Project or Regional Strategic Industry Promotion Project became a core of regional textile industrial policy. Research results indicated that the first stage Milano project (1999-2003) showed both positive and negative effects. There were no long-term development plan, clear vision and strategy. But, core industrial infrastructure for differentiated product development, such as New product Development Support Center and Dyeing Design Practical Application Center, was constructed. The second stage Daegu Textile Industry Promotion Plan (2004-2008) displayed a significant technological performance and new product sales with the assistance of Kyungbuk province. Also, textile industry revealed positive fruits such as financial structure, productivity, and profitability as a result of strong restructuring. In industrial structure, there was a important change from clothe textile material to industry textile material. Most of textile companies did not showed high capability in CEO's technology innovation intention, entrepreneurship, R&D and human resource competency in compare with other industry. We suggested that Daegu Kyungbuk has to select and concentrate on the high-tech textile material and living textile for sustainable development and competitiveness. We also proposed a confidence and cooperation based innovation network and company oriented innovation cluster.

  • PDF

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

An Analysis of Linkage of Scientific and Technological Knowledge to Industry (과학기술 지식흐름의 산업연계 파급경로 분석)

  • Park, Hyun-Woo;Lee, Chang-Hoan;Yeo, Woon-Dong
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.1
    • /
    • pp.91-117
    • /
    • 2008
  • The relationships between science, technology, and industry are very complicated and vary according to time. Thus, it would be almost impossible to combine the three categories in a single model. However, the linking of science, technology, and industry, which are divided according to their respective classification standards, is a starting point from which to understand how science and technology, technology and industry, and further science, technology, and industry are related to each other. Studies have been carried out to analyze the relationship between science and technology and between technology and industry, whereas no study has been undertaken to get an overall view of science, technology, and industry. Since an appropriate methodology or an analytical model has not been suggested, this paper proposes a model for generally analyzing science, technology, and industry. More specifically, this paper examines the methodology for linking science, technology, and industry. This paper uses citation analysis to analyze knowledge flow such as absorption and utilization of given knowledge, looks at the provision of knowledge to create new knowledge, and examines the use of network analysis to analyze the complicated phenomenon of knowledge flow. This paper proposes an empirical study of trend analysis of technological innovation by looking into a linkage structure of knowledge flow among science, technology, and industry based on the classification linkage and analysis methodology using scientific paper and patents.

  • PDF

A Qualitative Case Study on the Changes in Child Care Institutions Adopting Daily Two-shift Roster of Child Care Workers (아동양육시설 보육사 2교대 제도에 따른 시설 내 변화에 대한 질적 사례연구)

  • Kwon, Ji-Sung;Kim, Jung-Deuk;Sang, Hye-Jin
    • Korean Journal of Social Welfare
    • /
    • v.58 no.1
    • /
    • pp.115-141
    • /
    • 2006
  • The purpose of this study is to understand the changes from adopting daily two-shift roster in child care institutions. To accomplish this purpose, we collected data mainly from depth interview with managers, child care workers, and children in child care institutions adopting daily two-shift roster, and analysed these data through qualitative case study approach. The results of this study are as follows. First, child care workers take the chance of recreation, their working conditions improved, they were participated in self-development activity, and they could make relationship with persons in social network. But, some participants worried about decrease of responsibility of workers. Second, one hand, possibility of high-quality care for child is increased, on the other hand, possibility of improving attachment relationship between workers and children is decreased. some children is confused by shift. But, most important strength is that partners have complementary parenting roles through discussion about parenting skills. They have developed communication skills by trial and error, and growed with children through sharing. Third, many qualified persons have applied for institution because of improvement of working conditions, thus institutions had the chance of adopting qualified workers. These workers have various abilities and resources, could mobilize resources from community, and could progress various programs and intervene for children. But, institutions had many difficulties in process adopting daily two-shift roster because of unstable financial support and previous structure. Most of participants worried about that local government may cut down a subsidy.

  • PDF

A Study on Pseudo N-gram Language Models for Speech Recognition (음성인식을 위한 의사(疑似) N-gram 언어모델에 관한 연구)

  • 오세진;황철준;김범국;정호열;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.16-23
    • /
    • 2001
  • In this paper, we propose the pseudo n-gram language models for speech recognition with middle size vocabulary compared to large vocabulary speech recognition using the statistical n-gram language models. The proposed method is that it is very simple method, which has the standard structure of ARPA and set the word probability arbitrary. The first, the 1-gram sets the word occurrence probability 1 (log likelihood is 0.0). The second, the 2-gram also sets the word occurrence probability 1, which can only connect the word start symbol and WORD, WORD and the word end symbol . Finally, the 3-gram also sets the ward occurrence probability 1, which can only connect the word start symbol , WORD and the word end symbol . To verify the effectiveness of the proposed method, the word recognition experiments are carried out. The preliminary experimental results (off-line) show that the word accuracy has average 97.7% for 452 words uttered by 3 male speakers. The on-line word recognition results show that the word accuracy has average 92.5% for 20 words uttered by 20 male speakers about stock name of 1,500 words. Through experiments, we have verified the effectiveness of the pseudo n-gram language modes for speech recognition.

  • PDF

Forecasting Competition of Telecommunication Company in Full Browsing Service Market Based on First-Mover Advantage Analysis (풀브라우징 서비스 시장에서의 이동통신 3사의 경쟁 동향 분석: 선발자 이익 분석 관점)

  • Park, Jin-Soo;Choi, Young-Seok
    • Information Systems Review
    • /
    • v.12 no.1
    • /
    • pp.145-164
    • /
    • 2010
  • Since the third generation (3G) mobile communication service has been launched by most mobile communication operators in Korea, the portion of data service in mobile communication service becomes one of the most important factors in mobile communication service market. In past mobile communication market, most mobile communication operators made their profit mostly from voice communication service. However, the portion of profit from data service has gradually increased based on both video phone call and mobile Internet service. In this situation, LG telecom launched the full browsing mobile Internet service. This service provides a new type of mobile Internet service platform which enables to access the World Wide Web using mobile browsers, so we generally access the Web using web browsers in the desktop computer. Under the open network structure of mobile Internet like situation, it is very important to analyze the factors which can affect the competition between mobile communication service companies. So, in this paper, we first present the current state of full browsing service, followed by the expectation of its growth potentials and barriers. Then, we analyze the advantages and disadvantage of LG telecom as a first-mover and SK telecom/KTF as followers. Finally, based on this analysis, we predict the future competition among these companies and the market.

Smart Ship Container With M2M Technology (M2M 기술을 이용한 스마트 선박 컨테이너)

  • Sharma, Ronesh;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.278-287
    • /
    • 2013
  • Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.