• Title/Summary/Keyword: Network road tunnel

Search Result 34, Processing Time 0.023 seconds

An Impact Analysis of the Korea-Japan Undersea Tunnel Project;focus on Economic Potential Model Analysis (한일간 해저터널사업의 효과분석;성장잠재력 분석을 중심으로)

  • Park, Jin-Hee
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • With rapid growing of the Northeastern Asia, the interest for the connection of Infrastructure that was behind of interesting until now is getting larger. In a line of same connection, UN-ESCAP are forwarding transcontinental railway project, asian highway project et al.. And this study aimed at analysis on the effect that extended to a space by Korea-Japan undersea tunnel project. In aspect of a national land balanced-development to solve various problems such as overcrowding in capital region, unbalanced state by regions, weak exchange between South and North Korea, and weakness of national land basis to prepare for unification et al., this study consulted the economic potentiality model as a analysis method to examine an effect. In this analysis, I used 24 scenarios including all cases by combination of 3 scenarios for Korea-Japan undersea tunnel, 4 scenarios for transportation modes in the section of undersea tunnel, and 2 scenarios for adjacency infrastructure. Transportation modes in the section of undersea tunnel are railway, car-train, mixing way of railway and car-train, and mixing way of road and railway. Adjacency infrastructure applied railway and road. In all scenarios, Korea showed higher growth potentiality than Japan. Also, proposal plan C route relatively showed better in national land balanced-development than other proposal plans. The growth potentiality relatively appeared higher by buildup of a connection together with non-capital regions from the construction of Korea-Japan undersea tunnel. In aspect of Northeastern Asia, it resulted in a increasing of trade and chance of network formation in the region of Asia through infrastructure connection. But, in considering passenger and various factors that extended to the economic growth, this analysis have some limitation. Therefore, I hope that deep studies will continuously perform with various factors.

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.

Detection of Steel Ribs in Tunnel GPR Images Based on YOLO Algorithm (YOLO 알고리즘을 활용한 터널 GPR 이미지 내 강지보재 탐지)

  • Bae, Byongkyu;Ahn, Jaehun;Jung, Hyunjun;Yoo, Chang Kyoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.31-37
    • /
    • 2023
  • Since tunnels are built underground, it is impossible to check visually the location and degree of deterioration of steel ribs. Therefore, in tunnel maintenance, GPR images are generally used to detect steel ribs. While research on GPR image analysis employing artificial neural networks has primarily focused on detecting underground pipes and road damage, there have been limited applications for analyzing tunnel GPR data, specifically for steel rib detection, both internationally and domestically. In this study, a one-step object detection algorithm called YOLO, based on a convolutional neural network, was utilized to automate the localization of steel ribs using GPR data. The performance of the algorithm is then analyzed. Two datasets were employed for the analysis. A dataset comprising 512 original images and another dataset consisting of 2,048 augmented images. The omission rate, which represents the ratio of undetected steel ribs to the total number of steel ribs, was 0.38% for the model using the augmented data, whereas the omission rate for the model using only the original data was 7.18%. Thus, from an automation standpoint, it is more practical to employ an augmented dataset.

Quantitative Risk Assessment Method for Deep Placed Underground Spaces (대심도지하공간의 정량적위험성 평가기법)

  • Lee, Chang-wook
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.92-119
    • /
    • 2010
  • As the necessity to utilize deep-placed underground spaces is increasing, we have to seriously consider the safety problems arising from the U/G spaces which is a restricted environment. Due to the higher cost of land compensation for above ground area and environmental issues, the plan to utilize deep-placed U/G spaces is currently only being established for the construction of U/G road network and GTX. However it is also expected that the U/G spaces are to be used as a living space because of the growing desires to change the above ground areas into the environmentally green spaces. Accordingly it is necessary to protect the U/G environments which is vulnerable against desasters caused by fire, explosion, flooding, terrorism, electric power failure, etc. properly. We want to introduce the principles of the Quantitative Risk Assessment(QRA) method for preparedness against the desasters arising from U/G environments, and also want to introduce an example of QRA which was implemented for the GOTTHARD tunnel which is the longest one in Europe.

Development of Network Level Management System of Road Facilities Based on the Asset Management Concept (자산관리개념을 접목한 네트워크 방식의 도로시설물 유지관리시스템 개발)

  • Ji, Seung Gu;Seo, Jong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.146-154
    • /
    • 2011
  • Recently, the paradigm of social infrastructure investment has been changed from new construction to maintenance and management. As a consequence, the management and maintenance system of existing highway facilities needed an innovation involving the concept of asset management. This paper discusses the new facility management system suitable to local highway agencies. The new system incorporates asset management concept so that it can analyze the network level facility management solution and it can also improve the budget efficiency for local government. This paper also presents systematic method to integrate various facilities for management system.

A study on the design and applicability of stereoscopic sign for improving the visibility of traffic sign in double-deck tunnel (복층터널 교통표지판 시인성 향상을 위한 입체표지판 설계 및 적용 가능성에 대한 연구)

  • Park, Sang-Heon;Hwang, Ju-Hwan;Han, Sang-Ju;An, Sung-Joo;Kim, Hoon-Jae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.899-915
    • /
    • 2018
  • In this study, in order to construct an eco-friendly advanced road transportation network, the multi-layer tunnel, which is a small-sized car road, is designed to have a height of less than 60 cm. However, the shape of the tunnel is low and the height of the traffic sign is small. In order to solve these problems, traffic sign characters were designed in three dimensions, and the possibility of applying the design of the three - dimensional sign that can obtain greater visibility than the existing signs at the same distance and the possibility verification through virtual simulation were performed. The three-dimensional sign is horizontally installed on the ceiling of the multi-layer tunnel. To be seen vertically, it is enlarged by a certain ratio by the perspective, and the width and height are enlarged. Respectively. In addition, 3D simulation was performed to verify the visibility of the stereoscopic signs when the driver ran through the stereoscopic sign design specifications. As a result of the design and experimental study, it was confirmed that the stereoscopic sign could be designed through the theoretical formula and that it could provide the driver with a larger traffic sign character because there is no limitation of the facility limit compared to the existing vertical traffic sign. Also, we confirmed that it can be implemented in the side wall by using the stereoscopic sign design principle installed on the ceiling part. It was confirmed that the design of the stereoscopic sign can be designed to be smaller as the distance that the driver visually recognizes the sperm is shorter, the height of the protrusion vertically at the lower part of the stereoscopic sign becomes higher. As a result of 3D simulation running experiment based on the design information of the stereoscopic sign, it was confirmed that the stereoscopic sign is visually the same as the vertical sign at the planned distance. Although the detailed research and institutional improvement of stereoscopic signs have not been made in Korea and abroad, it is evolved into a core technology of new road traffic facilities through various studies through the possibility of designing and applying stereoscopic signs developed through this study Expect.

Calculation of a Diesel Vehicle's Carbon Dioxide Emissions during Haulage Operations in an Underground Mine using GIS (GIS를 이용한 지하광산 디젤 차량의 운반작업 시 탄소배출량 산정)

  • Park, Boyoung;Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.373-382
    • /
    • 2015
  • This study presents a method to calculate carbon dioxide emissions of diesel vehicles operated in an underground mine using Geographic Information Systems (GIS). An underground limestone mine in Korea was selected as the study area. A GIS database was constructed to represent the haulage roads as a 3D vector network. The speed of dump trucks at each haulage road was investigated to determine the carbon dioxide emission factor. The amount of carbon dioxide emissions related to the truck's haulage work could be calculated by considering the carbon dioxide emission factor at each haulage road and the haulage distance determined by GIS-based optimal route analysis. Because diesel vehicles are widely utilized in the mining industry, the method proposed in this study can be used and further improved to calculate the amount of carbon dioxide emissions in mining sites.

Analysis of Acquaintance Relations Between Parameters of RMR and Q Rock Mass Classification System (RMR 및 Q 암반분류법의 평가 요소간 친숙도 관계 분석)

  • Synn, Joong-Ho;Park, Chul-Whan;SunWoo, Choon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.408-417
    • /
    • 2008
  • Rock mass classification methods such as RMR and Q system have different characteristics each other in parameters considered and applications, and so it is very important to prescribe the relationship between parameters for the analysis of correlativity of these methods. With the Held data of RMR and Q estimation in road construction sites, the acquaintance relations between RMR and Q of rock mass classifications are analyzed. The correlation equations between parameters of RMR and Q, matrix of correlation coefficients and the generalized form of acquaintance relation matrix are derived. This acquaintance relation matrix can be further extended to the form of generalized acquaintance relation network, and could be used to analyze the correlativity and to enhance the utility of common rock mass classification methods.