• Title/Summary/Keyword: Network partition

Search Result 156, Processing Time 0.022 seconds

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

An Energy Efficient Unequal Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 불균형 클러스터링 알고리즘)

  • Lee, Sung-Ju;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.783-790
    • /
    • 2009
  • The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.

Secure Jini Service Architecture Providing Ubiquitous Services Having Persistent States (유비쿼터스 서비스 상태지속을 지원하는 안전한 Jini 서비스 구조)

  • Kim, Sung-Ki;Jung, Jin-Chul;Park, Kyung-No;Min, Byoung-Joon
    • The KIPS Transactions:PartC
    • /
    • v.15C no.3
    • /
    • pp.157-166
    • /
    • 2008
  • The ubiquitous service environment is poor in reliability of connection and also has a high probability that the intrusion against a system and the failure of the services may happen. Therefore, It is very important to guarantee that the legitimate users make use of trustable services from the viewpoint of security without discontinuance or obstacle of the services. In this paper, we point out the problems in the standard Jini service environment and analyze the Jgroup/ARM framework that has been developed in order to help fault tolerance of Jini services. In addition, we propose a secure Jini service architecture to satisfy the security, availability and quality of services on the basis of the analysis. The secure Jini service architecture we propose in this paper is able to protect a Jini system not only from faults such as network partition or server crash, but also from attacks exploiting flaws. It provides security mechanism for dynamic trust establishment among the service entities. Moreover, our secure Jini service architecture does not incur high computation costs to merge the user service states because of allocation of the replica based on each session of a user. Through the experiment on a test-bed, we have confirmed that proposed secure Jini service architecture is able to guarantee the persistence of the user service states at the level that the degradation of services quality is ignorable.

A Bottleneck Search Algorithm for Digraph Using Maximum Adjacency Merging Method (최대 인접 병합 방법을 적용한 방향 그래프의 병목지점 탐색 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.129-139
    • /
    • 2012
  • Given digraph network $D=(N,A),n{\in}N,a=c(u,v){\in}A$ with source s and sink t, the maximum flow from s to t is determined by cut (S, T) that splits N to $s{\in}S$ and $t{\in}T$ disjoint sets with minimum cut value. The Ford-Fulkerson (F-F) algorithm with time complexity $O(NA^2)$ has been well known to this problem. The F-F algorithm finds all possible augmenting paths from s to t with residual capacity arcs and determines bottleneck arc that has a minimum residual capacity among the paths. After completion of algorithm, you should be determine the minimum cut by combination of bottleneck arcs. This paper suggests maximum adjacency merging and compute cut value method is called by MA-merging algorithm. We start the initial value to S={s}, T={t}, Then we select the maximum capacity $_{max}c(u,v)$ in the graph and merge to adjacent set S or T. Finally, we compute cut value of S or T. This algorithm runs n-1 times. We experiment Ford-Fulkerson and MA-merging algorithm for various 8 digraph. As a results, MA-merging algorithm can be finds minimum cut during the n-1 running times with time complexity O(N).

Super High-Resolution Image Style Transfer (초-고해상도 영상 스타일 전이)

  • Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.104-123
    • /
    • 2022
  • Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.

A Study of Performance Analysis on Effective Multiple Buffering and Packetizing Method of Multimedia Data for User-Demand Oriented RTSP Based Transmissions Between the PoC Box and a Terminal (PoC Box 단말의 RTSP 운용을 위한 사용자 요구 중심의 효율적인 다중 수신 버퍼링 기법 및 패킷화 방법에 대한 성능 분석에 관한 연구)

  • Bang, Ji-Woong;Kim, Dae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.54-75
    • /
    • 2011
  • PoC(Push-to-talk Over Cellular) is an integrated technology of group voice calls, video calls and internet based multimedia services. If a PoC user can not participate in the PoC session for various reasons such as an emergency situation, lack of battery capacity, then the user can use the PoC Box which has a similar functionality to the MM Box in the MMS(Multimedia Messaging Service). The RTSP(Real-Time Streaming Protocol) method is recommended to be used when there is a transmission session between the PoC box and a terminal. Since the existing VOD service uses a wired network, the packet size of RTSP-based VOD service is huge, however, the PoC service has wireless communication environments which have general characteristics to be used in RTSP method. Packet loss in a wired communication environments is relatively less than that in wireless communication environment, therefore, a buffering latency occurs in PoC service due to a play-out delay which means an asynchronous play of audio & video contents. Those problems make a user to be difficult to find the information they want when the media contents are played-out. In this paper, the following techniques and methods were proposed and their performance and superiority were verified through testing: cross-over dual reception buffering technique, advance partition multi-reception buffering technique, and on-demand multi-reception buffering technique, which are designed for effective picking up of information in media content being transmitted in short amount of time using RTSP when a user searches for media, as well as for reduction in playback delay; and same-priority packetization transmission method and priority-based packetization transmission method, which are media data packetization methods for transmission. From the simulation of functional evaluation, we could find that the proposed multiple receiving buffering and packetizing methods are superior, with respect to the media retrieval inclination, to the existing single receiving buffering method by 6-9 points from the viewpoint of effectiveness and excellence. Among them, especially, on-demand multiple receiving buffering technology with same-priority packetization transmission method is able to manage the media search inclination promptly to the requests of users by showing superiority of 3-24 points above compared to other combination methods. In addition, users could find the information they want much quickly since large amount of informations are received in a focused media retrieval period within a short time.