• Title/Summary/Keyword: Network on Chip(NOC)

Search Result 6, Processing Time 0.019 seconds

A System Level Network-on-chip Model with MLDesigner

  • Agarwal, Ankur;Shankar, Rabi;Pandya, A.S.;Lho, Young-Uhg
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2008
  • Multiprocessor architectures and platforms, such as, a multiprocessor system on chip (MPSoC) recently introduced to extend the applicability of the Moore's law, depend upon concurrency and synchronization in both software and hardware to enhance design productivity and system performance. With the rapidly approaching billion transistors era, some of the main problem in deep sub-micron technologies characterized by gate lengths in the range of 60-90 nm will arise from non scalable wire delays, errors in signal integrity and non-synchronized communication. These problems may be addressed by the use of Network on Chip (NOC) architecture for future System-on-Chip (SoC). We have modeled a concurrent architecture for a customizable and scalable NOC in a system level modeling environment using MLDesigner (from MLD Inc.). Varying network loads under various traffic scenarios were applied to obtain realistic performance metrics. We provide the simulation results for latency as a function of the buffer size. We have abstracted the area results for NOC components from its FPGA implementation. Modeled NOC architecture supports three different levels of quality-of-service (QoS).

A Deadlock Free Router Design for Network-on-Chip Architecture (NOC 구조용 교착상태 없는 라우터 설계)

  • Agarwal, Ankur;Mustafa, Mehmet;Shiuku, Ravi;Pandya, A.S.;Lho, Young-Ugh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.696-706
    • /
    • 2007
  • Multiprocessor system on chip (MPSoC) platform has set a new innovative trend for the System on Chip (SoC) design. With the rapidly approaching billion transistors era, some of the main problem in deep sub-micron technologies characterized by gate lengths in the range of 60-90 nm will arise from non scalable wire delays, errors in signal integrity and un-synchronized communication. These problems may be addressed by the use of Network on Chip (NOC) architecture for future SoC. Most future SoCs will use network architecture and a packet based communication protocol for on chip communication. This paper presents an adaptive wormhole routing with proactive turn prohibition to guarantee deadlock free on chip communication for NOC architecture. It shows a simple muting architecture with five full-duplex, flit-wide communication channels. We provide simulation results for message latency and compare results with those of dimension ordered techniques operating at the same link rates.

NOC Architecture Design Methodology (NOC 구조 설계 방법론)

  • Agarwal Ankur;Pandya A. S.;Asaduzzaman Abu;Lho Young-Uhg
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • Multiprocessor system on chip (MPSoC) platforms has set a new innovative trend for the SoC design. Quality of service parameters and performance matrix are leading to the adoption of new design methodology for SoC, which will incorporate highly scalable, reusable, predictable, cost and energy efficient platform not only for underlying communication backbone but also for the entire system architecture of NOC. Like the layered architecture for the communication backbone of NOC, we have proposed the entire system architecture for NOC to be a seven layered architecture in itself. Such a platform can separate the domain specific issues which will model concurrency along with the synchronization issues more effectively. For such a layered architecture, model of computation will provide a framework to that can model concurrency and synchronization issues which are natural for any application. Therefore it becomes extremely important to use a right computation model in a specific NOC region.

Improving Parallel Testing Efficiency of Memory Chips using NOC Interconnect (NOC 인터커넥트를 활용한 메모리 반도체 병렬 테스트 효율성 개선)

  • Hong, Chaneui;Ahn, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.364-369
    • /
    • 2019
  • Generally, since memory chips should be tested all, considering its volume, the reduction in test time for detecting faults plays an important role in reducing the overall production cost. The parallel testing of chips in one ATE is a competitive solution to solve it. In this paper, NOC is proposed as test interface architecture between DUTs and ATE. Because NOC can be extended freely, there is no limit on the number of DUTs tested at the same time. Thus, more memory can be tested with the same bandwidth of ATE. Furthermore, the proposed NOC-based parallel test method can increase the efficiency of channel usage by packet type data transmission.

THE EFFECT OF NUMBER OF VIRTUAL CHANNELS ON NOC EDP

  • Senejani, Mahdieh Nadi;Ghadiry, Mahdiar Hossein;Dermany, Mohamad Khalily
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.539-551
    • /
    • 2010
  • Low scalability and power efficiency of the shared bus in SoCs is a motivation to use on chip networks instead of traditional buses. In this paper we have modified the Orion power model to reach an analytical model to estimate the average message energy in K-Ary n-Cubes with focus on the number of virtual channels. Afterward by using the power model and also the performance model proposed in [11] the effect of number of virtual channels on Energy-Delay product have been analyzed. In addition a cycle accurate power and performance simulator have been implemented in VHDL to verify the results.

Design of a Dynamically Reconfigurable Switch for Hybrid Network-on-Chip Systems (Hybrid Noc 시스템을 위한 재구성 가능한 스위치 설계)

  • Lee, Dong-Yeol;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8B
    • /
    • pp.812-821
    • /
    • 2009
  • This paper proposes a novel dynamically reconfigurable switch for various multimedia applications in hybrid NoC systems. Current NoC systems, which adopt hybrid NoC structure with fixed switch and job distribution algorithms, require designers to precisely predict the property of applications to be processed. This paper proposes a reconfigurable switch which minimizes buffer overflow in various multimedia applications running on an NoC system. To verify the performance of the proposed system, we performed experiments on various multimedia applications running on embedded systems, such as MPEG4 and MP3 decoder, GPS positioning system, and OFDM demodulator. Experimental results show that buffer overflow has been decreased by 41.8% and 29.0%, respectively, when compared with NoC systems having sub-clusters with mesh or star topology. Power usage has been increased by 2.3% compared with hybrid NoC systems using fixed switches, and chip area has been increased from -0.6% to 5.7% depending on sub-cluster topology.