• 제목/요약/키워드: Network load testing

검색결과 33건 처리시간 0.02초

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Engineered Soils의 특성 (Characteristics of Engineered Soils)

  • 이종섭;이창호;이우진;산타마리나
    • 한국지반공학회논문집
    • /
    • 제22권8호
    • /
    • pp.129-136
    • /
    • 2006
  • 단단한 모래 입자와 연약하고 작은 고무 입자로 이루어진 Engineered Soil의 변형률에 따른 거동을 분석하기 위한 시험을 수행하였다. 파의 전파, $K_{o}$ 재하, 삼축 시험을 이용하여 단단한 입상 재료에서 연약한 입상 재료의 전이 거동을 파악하기 위해 다른 모래부피비를 가진 Engineered Soil을 준비하였다. 미소, 중간 및 대변형 변형계수는 단단한 입자의 부피비에 따라 직선 관계가 아닌 것으로 나타났다. 대신 변형계수들은 모래부피비가 $sf=0.6{\sim}0.8$ 사이의 threshold 값을 초과할 때 급격하게 증가하였다. 이는 단단한 입자들의 침투 네트워크(percolating network)의 형성을 나타낸다. 내부마찰각은 단단한 입자의 부피비가 증가함에 따라 증가한다. 반대로, 첨두 강도에서의 축변형률은 연약한 입자의 함유에 따라 증가하며, 모래부피비가 60% 이하인 Engineered Soil에서는 첨두 강도를 관찰 할 수 없었다. 연약한 입자의 존재는 하중 체인(farce chain)의 형성을 바꾼다. 연약한 입자들이 높은 하중 전달 체인(chain)의 역할을 못할 지라도, 단단한 입자 하중 체인의 뒤틀림 방지의 중요한 역할을 수행한다.