• Title/Summary/Keyword: Network diagnosis

Search Result 923, Processing Time 0.026 seconds

A Study on Modeling and Fault Diagnosis of Suspension Systems Using Neural Network (신경망을 이용한 현가시스템의 모델링 및 고장 진단에 관한 연구)

  • 이정호;박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.95-103
    • /
    • 2003
  • Driving safety of a vehicle is largely influenced by the damper and the tire. Developed in this research is a fault diagnosis algorithm for the two components so that the driver can be promptly informed when fault occurs in one or both of them. To this end, the damper and the tire were modeled using the neural network from their experimental data, and fault diagnosis was made using frequency responses of the damping force and the dynamic wheel force. The algorithm was tested via experiments, and it demonstrated successful diagnostic performance under various driving conditions.

Fault Diagnosis of Rotating Machines Using Wavelet Transform and Neural Network (웨이블렛 변환과 신경망 알고리즘을 이용한 회전기기 결함진단)

  • 최태묵;조대승
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.61-65
    • /
    • 2002
  • The fault detection and diagnosis of rotating machinery widely used in plants including the ship are important for maintaining the performance of Plants. Recently, the wavelet transform has been recognized an efficient method to detect a little variation of physical quantities by the synchronous localization of time and frequency domains using the translation and dilation of signals. In this Paper, In order to develop efficient and reliable fault detection and diagnosis system rotating machines, the performance of wavelet transformation to detect a little variation of machine status and neural network to diagnose the cause of machine faults are investigated and experimented.

Aging Diagnosis of Model Coil of HV Induction Motor Using HFPD and Neural Networks (HFPD 및 신경회로망을 이용한 고압 유도전동기 모델코일 열화진단)

  • Kim, Deok-Geun;Im, Jang-Seop;Yeo, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.361-367
    • /
    • 2002
  • Many failures in high voltage equipment are preceded by partial discharge activity. In this paper deals with the application of the high frequency partial discharge measurement technique in motorette. HFPD measurement is very effective method to detect the PD occurred in motorette which is the called name of test specimen for accelerating test of stator winding[1] In this study, CT type HFPD sensor is used to detect the partial discharges and a measured HFPD pattern is analyzed by fractal mathematics. The neural network algorithm is used to pattern recognition and ageing diagnosis. As a result of this study, the fractal dimensions are increased along to applied voltage and HFPD pattern recognition using neural network shown excellent recognition rate. Also, the ageing diagnosis of motorette has been Possible.

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

Expert System for Fault Diagnosis of Transformer

  • Kim, Jae-Chul;Jeon, Hee-Jong;Kong, Seong-Gon;Yoon, Yong-Han;Choi, Do-Hyuk;Jeon, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 1997
  • This paper presents hybrid expert system for diagnosis of electric power transformer faults. The expert system diagnose and detect faults in oil-filled power transformers based on dissolved gas analysis. As the preprocessing stage, fuzzy information theory is used to manage the uncertainty in transformer fault diagnosis using dissolved gas analysis. The Kohonen neural network takes the interim results by applying fuzzy informations theory as inputs, and performs the transformer fault diagnosis. The Proposed system tested gas records of power transformers from Korea Electric Power Corporation to verify the diagnosis performance of transformer faults.

  • PDF

Development of A Fault Diagnosis System for Assembled Small Motors Using ANN (인공신경회로망을 이용한 소형 모터의 조립 불량 판별 시스템 개발)

  • Lee, Sang-Min;Jo, Jung-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.124-131
    • /
    • 2001
  • Fault diagnosis of an assembled small motor relies usually on human experts hearing ability. The quality of diagnosis depends, however, heavily on physical conditions of the human experts. A fault diagnosis system for assembled small motors is developed using artificial neural network (ANN) in this paper. It is consisted of sound sampling device and fault diagnosis software package. Six parameters are defined to characterize the sampled sound waves. The Levenberg-Marquardt Backpropagation (LMBP) Algorithm is used to diagnose the fault of assembled small motors. Experimental results for more than two hundred small motors verify the performance of the developed system.

  • PDF

Multiple fault diagnosis method using a neural network

  • Lee, Sanggyu;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.109-114
    • /
    • 1993
  • It is well known that neural networks can be used to diagnose multiple faults to some limited extent. In this work we present a Multiple Fault Diagnosis Method (MFDM) via neural network which can effectively diagnose multiple faults. To diagnose multiple fault, the proposed method finds the maximum value in the output nodes of the neural network and decreases the node value by changing the hidden node values. This method can find the other faults by computing again with the changed hidden node values. The effectiveness of this method is explored through a neural-network-based fault diagnosis case study of a fluidized catalytic cracking unit (FCCU).

  • PDF

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems (태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF