• Title/Summary/Keyword: Network diagnosis

Search Result 923, Processing Time 0.027 seconds

Alarm Diagnosis Monitoring System of RCP using Self Dynamic Neural Networks (자기 동적 신경망을 이용한 RCP의 경보 진단 시스템)

  • Ryoo, Dong-Wan;Kim, Dong-Hoon;Lee, Cheol-Kwon;Seong, Seung-Hwan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2488-2491
    • /
    • 2000
  • A Neural network is possible to nonlinear function mapping and parallel processing. Therefore It has been developing for a Diagnosis system of nuclear plower plant. In general Neural Networks is a static mapping but Dynamic Neural Network(DNN) is dynamic mapping. When a fault occur in system, a state of system is changed with transient state. Because of a previous state signal is considered as a information. DNN is better suited for diagnosis systems than static neural network. But a DNN has many weights, so a real time implementation of diagnosis system is in need of a rapid network architecture. This paper presents a algorithm for RCP monitoring Alarm diagnosis system using Self Dynamic Neural Network(SDNN). SDNN has considerably fewer weights than a general DNN. Since there is no interlink among the hidden layer. The effectiveness of Alarm diagnosis system using the proposed algorithm is demonstrated by applying to RCP monitoring in Nuclear power plant.

  • PDF

Fault Diagnosis for a System Using Classified Pattern and Neural Networks (분류패턴과 신경망을 이용한 시스템의 고장진단)

  • Lee, Jin-Ha;Park, Seong-Wook;Seo, Bo-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.643-650
    • /
    • 2000
  • Using neural network approach, the diagnosis of faults in industrial process that requires observing multiple data simultaneously are studied. Two-stage diagnosis is proposed to analyze system faults. By using neural network, the first stage detects the dynamic trend of each normalized date patterns by comparing a proposed pattern. Instead of using neural network, the difference between stored fault pattern and real time data is used for fault diagnosis in the second stage. This method reduces the amount of calculation and saves storing space. Also, we dealt with unknown faults by normalizing the data and calculating the difference between the value of steady state and the data in case of fault. A model of tank reactor is given to verify that the proposed method is useful and effective to noise.

  • PDF

Network Design for Construction of Remote Diagnosis System for Power Facilities of Electric Railway (전기철도 전력시설 진단용 원격진단시스템 구축을 위한 네트워크 설계)

  • Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.432-436
    • /
    • 2009
  • This paper is described that advanced study on network design of remote diagnosis system for power facilities of electric railway. In the field, it is very difficult for worker to diagnosis power facilities including catenary because workers should be maintenance on AC power supply. Therefore, to properly design on remote diagnosis system, we have searched the inside and outside of the country-related technology trends. Also we confirmed that required technologies to design interface technology required for the development of sensor devices and the USN network was designed in accordance with required skills. Throughout variety of requirements, we have development iRFS based ZA sensors and iRFM to receive data of sensor. Also CC2420 is applied as single-chip which used 2.4GHz IEEE802.15.4 compliant RF tranciver designed for low-power and low-voltage wireless applications for ZigBee communication.

A study on Fault Diagnosis in Power systems Using Probabilistic Neural Network (확률신경회로망을 이용한 전력계통의 고장진단에 관한 연구)

  • Lee, Hwa-Seok;Kim, Chung-Tek;Mun, Kyeong-Jun;Lee, Kyung-Hong;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.2
    • /
    • pp.53-57
    • /
    • 2001
  • This paper presents the new methods of fault diagnosis through multiple alarm processing of protective relays and circuit breakers in power systems using probabilistic neural networks. In this paper, fault section detection neural network (FSDNN) for fault diagnosis is designed using the alarm information of relays or circuit breakers. In contrast to conventional methods, the proposed FSDNN determines the fault section directly and fast. To show the possibility of the proposed method, it is simulated through simulation panel for Sinyangsan substation system in KEPCO (Korea Electric Power Corporation) and the case studies show the effectiveness of the probabilistic neural network mehtod for the fault diagnosis.

  • PDF

A Study on Power Quality Diagnosis System using Neural NetWorks (전기품질 진단 시스템 개발을 위한 인공 신경망 적용에 관한 연구)

  • Kim, Jin-Su;Kim, Young-Il;Kim, Kwang-Soon;Park, Gi-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1351-1359
    • /
    • 2007
  • In this paper, we have studied the power quality(PQ) diagnosis system with the two methods for PQ diagnosis. One to Apply a regulation value in compliance with mathematics calculation, and the other Automatic identification using Neural network algorithm. Neural network algorithm is used for an automatic diagnosis of the PQ. The regulation proposed by IEEE 1159 Working group is applied for the precision of the diagnosis. In order to divide accurate segmentation, the algorithm for a computer training used the back propagation out of several neural network algorithms. We have configured the proto-type sample by using Labview and a programmed Neural Networks Algorithm using with C. And arbitrary electric Signal generated by OMICRON Company's CMC 256-6 for an efficiency test.

A Study of ECG Based Cardiac Diseases Diagnoses (심전도 신호를 이용한 심장 질환 진단에 관한 연구)

  • Kim, Hyun-Dong;Yoon, Jae-Bok;Kim, Hyun-Dong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network

  • Zhichao Wang;Hong Xia;Jiyu Zhang;Bo Yang;Wenzhe Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2096-2106
    • /
    • 2023
  • Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.

Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables) (EIV를 이용한 신경회로망 기반 고장진단 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1020-1028
    • /
    • 2011
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.

A Lifetime Prediction and Diagnosis of Partial Discharge Mechanism Using a Neural Network (신경회로망을 이용한 부분방전 메카니즘의 진단과 수명예측)

  • Lee, Young-Sang;Kim, Jae-Hwan;Kim, Sung-Hong;Lim, Yun-Suk;Jang, Jin-Kang;Park, Jae-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.910-912
    • /
    • 1998
  • In this paper, we purpose automatic diagnosis in online, as the fundamental study to diagnose the partial discharge mechanism and to predict the lifetime, by introduction a neural network. In the proposed method, Ire use acoustic emission sensing system and calculate a fixed quantity statistic operator by pulse number and amplitude. Using statically operators such as the center of gravity(G) and the gradient of the discharge distribute(C), we analyzed the early stage and the middle stage. the fixed quantity statistic operators are learned by a neural network. The diagnosis of insulation degradation and a lifetime prediction by the early stage time are achieved. On the basis of revealed excellent diagnosis ability through the neural network learning for the patterns during degradation, it was proved that the neural network is appropriate for degradation diagnosis and lifetime prediction in partial discharge.

  • PDF