• Title/Summary/Keyword: Network by/for AI

Search Result 401, Processing Time 0.027 seconds

A Study on Voice Command Learning of Smart Toy using Convolutional Neural Network (합성곱 신경망을 이용한 스마트 토이의 음성명령 학습에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1210-1215
    • /
    • 2018
  • Recently, as the IoT(Internet of Things) and AI(Artificial Intelligence) technologies have developed, smart toys that can understand and act on the language of human beings are being studied. In this paper, we study voice learning using CNN(Convolutional Neural Network) by applying artificial intelligence based voice secretary technology to smart toy. When a human voice command gives, Smart Toy recognizes human voice, converts it into text, analyzes the morpheme, and conducts tagging and voice learning. As a result of test for the simulator program implemented using Python, no malfunction occurred in a single command. And satisfactory results were obtained within the selected simulation condition range.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Automated Detection Technique for Suspected Copyright Infringement Sites

  • Jeong, Hae Seon;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4889-4908
    • /
    • 2020
  • With the advances in Information Technology (IT), users can download or stream copyrighted works, such as videos, music, and webtoons, at their convenience. Thus, the frequency of use of copyrighted works has increased. Consequently, the number of unauthorized copies and sharing of copyrighted works has also increased. Monitoring is being conducted on sites suspected of conducting copyright infringement activities to reduce copyright holders' damage due to unauthorized sharing of copyrighted works. However, suspected copyright infringement sites respond by changing their domains or blocking access requests. Although research has been conducted for improving the effectiveness of suspected copyright infringement site detection by defining suspected copyright infringement sites' response techniques as a lifecycle step, there is a paucity of studies on automation techniques for lifecycle detection. This has reduced the accuracy of lifecycle step detection on suspected copyright infringement sites, which change domains and lifecycle steps in a short period of time. Thus, in this paper, an automated detection technique for suspected copyright infringement sites is proposed for efficient detection and response to suspected copyright infringement sites. Using our proposed technique, the response to each lifecycle step can be effectively conducted by automatically detecting the lifecycle step.

CSSMA/AI Protocol for Data Services in Packet CDMA Networks (패킷 CDMA 망에서 데이터 서비스를 위한 CSSMA/AI 프로토콜)

  • 임인택
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.475-478
    • /
    • 2004
  • In this paper, a CSSMA/AI MAC protocol for data services in packet CDMA network is presented. The proposed protocol is based on the code status sensing and reservation scheme. In the proposed protocol, the base station broadcast the rode status on a frame-by-frame basis just before the beginning of each preamble transmission, and the mobile station transmits a preamble for reserving a randomly selected code based on the received code status. After having transmitted the preamble, the mobile station listens to the downlink of the selected rode and waits for the base station reply. If this reply indicates that the code has been correctly acquired, it continues the packet transmission lot the rest of the frame. If there are other packets waiting for transmission, the base station broadcasts the status of the code as reserved, and the mobile station transmits a packet through the reserved code for the successive frames.

  • PDF

Challenges of diet planning for children using artificial intelligence

  • Changhun, Lee;Soohyeok, Kim;Jayun, Kim;Chiehyeon, Lim;Minyoung, Jung
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Diet planning in childcare centers is difficult because of the required knowledge of nutrition and development as well as the high design complexity associated with large numbers of food items. Artificial intelligence (AI) is expected to provide diet-planning solutions via automatic and effective application of professional knowledge, addressing the complexity of optimal diet design. This study presents the results of the evaluation of the utility of AI-generated diets for children and provides related implications. MATERIALS/METHODS: We developed 2 AI solutions for children aged 3-5 yrs using a generative adversarial network (GAN) model and a reinforcement learning (RL) framework. After training these solutions to produce daily diet plans, experts evaluated the human- and AI-generated diets in 2 steps. RESULTS: In the evaluation of adequacy of nutrition, where experts were provided only with nutrient information and no food names, the proportion of strong positive responses to RL-generated diets was higher than that of the human- and GAN-generated diets (P < 0.001). In contrast, in terms of diet composition, the experts' responses to human-designed diets were more positive when experts were provided with food name information (i.e., composition information). CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the development and evaluation of AI to support dietary planning for children. This study demonstrates the possibility of developing AI-assisted diet planning methods for children and highlights the importance of composition compliance in diet planning. Further integrative cooperation in the fields of nutrition, engineering, and medicine is needed to improve the suitability of our proposed AI solutions and benefit children's well-being by providing high-quality diet planning in terms of both compositional and nutritional criteria.

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima;Kainat Fareed Memon;Zahid Hussain Khand;Sana Gul;Manisha Kumari;Ghulam Mujtaba Sheikh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.155-164
    • /
    • 2023
  • Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.

A Comparative Analysis of Contents Related to Artificial Intelligence in National and International K-12 Curriculum (국내외 초·중등학교 인공지능 교육과정 분석)

  • Lee, Eunkyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • As the importance of artificial intelligence(AI) education is emphasized recently, policies and researches are being promoted to develop the AI curriculum or courses for K-12 students in worldwide. In this study, researcher analysed a synthesis of contents and standards on AI education curriculum to present implications for AI education in the elementary and secondary schools. As a result, Korea and the United States are proposing national curriculum standards to provide the basis for AI curriculum establishment in school sites and to provide guidelines for various related policies such as teacher training programs. The EU's AI education is characterized by its curriculum and online courses to ensure that all citizens of the EU have AI literacy, rather than designating students or subjects at specific school levels. In terms of educational contents and levels, Korea, United States, and EU's curriculum or standards includes basics and applications related to machine learning and neural network based on the fundamental concepts and principles of artificial intelligence.

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

Deobfuscation Processing and Deep Learning-Based Detection Method for PowerShell-Based Malware (파워쉘 기반 악성코드에 대한 역난독화 처리와 딥러닝 기반 탐지 방법)

  • Jung, Ho-jin;Ryu, Hyo-gon;Jo, Kyu-whan;Lee, Sangkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.501-511
    • /
    • 2022
  • In 2021, ransomware attacks became popular, and the number is rapidly increasing every year. Since PowerShell is used as the primary ransomware technique, the need for PowerShell-based malware detection is ever increasing. However, the existing detection techniques have limits in that they cannot detect obfuscated scripts or require a long processing time for deobfuscation. This paper proposes a simple and fast deobfuscation method and a deep learning-based classification model that can detect PowerShell-based malware. Our technique is composed of Word2Vec and a convolutional neural network to learn the meaning of a script extracting important features. We tested the proposed model using 1400 malicious codes and 8600 normal scripts provided by the AI-based PowerShell malicious script detection track of the 2021 Cybersecurity AI/Big Data Utilization Contest. Our method achieved 5.04 times faster deobfuscation than the existing methods with a perfect success rate and high detection performance with FPR of 0.01 and TPR of 0.965.

AIMS: AI based Mental Healthcare System

  • Ibrahim Alrashide;Hussain Alkhalifah;Abdul-Aziz Al-Momen;Ibrahim Alali;Ghazy Alshaikh;Atta-ur Rahman;Ashraf Saadeldeen;Khalid Aloup
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.225-234
    • /
    • 2023
  • In this era of information and communication technology (ICT), tremendous improvements have been witnessed in our daily lives. The impact of these technologies is subjective and negative or positive. For instance, ICT has brought a lot of ease and versatility in our lifestyles, on the other hand, its excessive use brings around issues related to physical and mental health etc. In this study, we are bridging these both aspects by proposing the idea of AI based mental healthcare (AIMS). In this regard, we aim to provide a platform where the patient can register to the system and take consultancy by providing their assessment by means of a chatbot. The chatbot will send the gathered information to the machine learning block. The machine learning model is already trained and predicts whether the patient needs a treatment by classifying him/her based on the assessment. This information is provided to the mental health practitioner (doctor, psychologist, psychiatrist, or therapist) as clinical decision support. Eventually, the practitioner will provide his/her suggestions to the patient via the proposed system. Additionally, the proposed system prioritizes care, support, privacy, and patient autonomy, all while using a friendly chatbot interface. By using technology like natural language processing and machine learning, the system can predict a patient's condition and recommend the right professional for further help, including in-person appointments if necessary. This not only raises awareness about mental health but also makes it easier for patients to start therapy.