• 제목/요약/키워드: Network Security Systems

검색결과 1,659건 처리시간 0.022초

DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

  • Chen, Tieming;Mao, Qingyu;Lv, Mingqi;Cheng, Hongbing;Li, Yinglong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2180-2197
    • /
    • 2019
  • With the proliferation of the Android malicious applications, malware becomes more capable of hiding or confusing its malicious intent through the use of code obfuscation, which has significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in order to effectively detect unknown malicious applications on the Android platform, we propose DroidVecDeep, an Android malware detection method using deep learning technique. First, we extract various features and rank them using Mean Decrease Impurity. Second, we transform the features into compact vectors based on word2vec. Finally, we train the classifier based on deep learning model. A comprehensive experimental study on a real sample collection was performed to compare various malware detection approaches. Experimental results demonstrate that the proposed method outperforms other Android malware detection techniques.

An Empirical Performance Analysis on Hadoop via Optimizing the Network Heartbeat Period

  • Lee, Jaehwan;Choi, June;Roh, Hongchan;Shin, Ji Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5252-5268
    • /
    • 2018
  • To support a large-scale Hadoop cluster, Hadoop heartbeat messages are designed to deliver the significant messages, including task scheduling and completion messages, via piggybacking to reduce the number of messages received by the NameNode. Although Hadoop is designed and optimized for high-throughput computing via batch processing, the real-time processing of large amounts of data in Hadoop is increasingly important. This paper evaluates Hadoop's performance and costs when the heartbeat period is controlled to support latency sensitive applications. Through an empirical study based on Hadoop 2.0 (YARN) architecture, we improve Hadoop's I/O performance as well as application performance by up to 13 percent compared to the default configuration. We offer a guideline that predicts the performance, costs and limitations of the total system by controlling the heartbeat period using simple equations. We show that Hive performance can be improved by tuning Hadoop's heartbeat periods through extensive experiments.

Wavelet-Based Digital Image Watermarking by Using Lorenz Chaotic Signal Localization

  • Panyavaraporn, Jantana;Horkaew, Paramate
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.169-180
    • /
    • 2019
  • Transmitting visual information over a broadcasting network is not only prone to a copyright violation but also is a forgery. Authenticating such information and protecting its authorship rights call for more advanced data encoding. To this end, electronic watermarking is often adopted to embed inscriptive signature in imaging data. Most existing watermarking methods while focusing on robustness against degradation remain lacking of measurement against security loophole in which the encrypting scheme once discovered may be recreated by an unauthorized party. This could reveal the underlying signature which may potentially be replaced or forged. This paper therefore proposes a novel digital watermarking scheme in temporal-frequency domain. Unlike other typical wavelet based watermarking, the proposed scheme employed the Lorenz chaotic map to specify embedding positions. Effectively making this is not only a formidable method to decrypt but also a stronger will against deterministic attacks. Simulation report herein highlights its strength to withstand spatial and frequent adulterations, e.g., lossy compression, filtering, zooming and noise.

Generative Linguistic Steganography: A Comprehensive Review

  • Xiang, Lingyun;Wang, Rong;Yang, Zhongliang;Liu, Yuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.986-1005
    • /
    • 2022
  • Text steganography is one of the most imminent and promising research interests in the information security field. With the unprecedented success of the neural network and natural language processing (NLP), the last years have seen a surge of research on generative linguistic steganography (GLS). This paper provides a thorough and comprehensive review to summarize the existing key contributions, and creates a novel taxonomy for GLS according to NLP techniques and steganographic encoding algorithm, then summarizes the characteristics of generative linguistic steganographic methods properly to analyze the relationship and difference between each type of them. Meanwhile, this paper also comprehensively introduces and analyzes several evaluation metrics to evaluate the performance of GLS from diverse perspective. Finally, this paper concludes the future research work, which is more conducive to the follow-up research and innovation of researchers.

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

A Novel Approach of Using Data Flipping for Efficient Energy on the Internet of Things

  • Ziyad Almudayni;Ben Soh;Alice Li
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2023
  • The Internet of Things (IoT) can be defined as the connection of devices, sensors, and actors via the Internet to a single network to provide services to end-users. Owing to the flexibility and simplicity of IoT devices, which impart convenience to end-users, the demand for these devices has increased significantly in the last decade. To make these systems more scalable, achieve a larger number of connected devices, and achieve greater economic success, it is vital to develop them by considering parameters such as security, cost, bandwidth, data rate, and power consumption. This study aims to improve energy efficiency and prolong the lifetime of IoT networks by proposing a new approach called the constrained application protocol CoAP45. This approach reduces the number of updates to the CoAP server using a centralized resource. The simulation results show that the proposed approach outperforms all existing protocols.

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • 반도체디스플레이기술학회지
    • /
    • 제23권1호
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

Text Mining과 네트워크 분석을 활용한 교육훈련용 모의사격 시뮬레이션 경험지식 분석 (Analysis of Experience Knowledge of Shooting Simulation for Training Using the Text Mining and Network Analysis)

  • 김성규;손창호;김종만;정세교;박재현;전정환
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.700-707
    • /
    • 2017
  • Recently, the military need more various education and training because of the increasing necessity of various operation. But the education and training of the military has the various difficulties such as the limitations of time, space and finance etc. In order to overcome the difficulties, the military use Defense Modeling and Simulation(DM&S). Although the participants in training has the empirical knowledge from education and training based on the simulation, the empirical knowledge is not shared because of particular characteristics of military such as security and the change of official. This situation obstructs the improving effectiveness of education and training. The purpose of this research is the systematizing and analysing the empirical knowledge using text mining and network analysis to assist the sharing of empirical knowledge. For analysing texts or documents as the empirical knowledge, we select the text mining and network analysis. We expect our research will improve the effectiveness of education and training based on simulation of DM&S.

DEESR: Dynamic Energy Efficient and Secure Routing Protocol for Wireless Sensor Networks in Urban Environments

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Gupta, Deepank;Gupta, Nidhi;Asthana, Anupriya
    • Journal of Information Processing Systems
    • /
    • 제6권3호
    • /
    • pp.269-294
    • /
    • 2010
  • The interconnection of mobile devices in urban environments can open up a lot of vistas for collaboration and content-based services. This will require setting up of a network in an urban environment which not only provides the necessary services to the user but also ensures that the network is secure and energy efficient. In this paper, we propose a secure, energy efficient dynamic routing protocol for heterogeneous wireless sensor networks in urban environments. A decision is made by every node based on various parameters like longevity, distance, battery power which measure the node and link quality to decide the next hop in the route. This ensures that the total load is distributed evenly while conserving the energy of battery-constrained nodes. The protocol also maintains a trusted population for each node through Dynamic Trust Factor (DTF) which ensures secure communication in the environment by gradually isolating the malicious nodes. The results obtained show that the proposed protocol when compared with another energy efficient protocol (MMBCR) and a widely accepted protocol (DSR) gives far better results in terms of energy efficiency. Similarly, it also outdoes a secure protocol (QDV) when it comes to detecting malicious nodes in the network.