• Title/Summary/Keyword: Network Search

Search Result 1,600, Processing Time 0.028 seconds

National Awareness of the 2019 World Swimming Championships using Big Data from Social Network Analysis (소셜네트워크 분석의 빅데이터를 활용한 2019세계수영선수권 대회의 국내 인식조사)

  • Kim, Gi-Tak
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.173-184
    • /
    • 2019
  • The data processing of this study is based on the word data search in social media through textom and the big data analysis is carried out and three areas (2019 Gwangju World Swimming Championships, 2019 Gwangju World Swimming Masters Competition, 2019 World Swimming Championships Problem) was consistently handled through data collection and refinement in the web environment. We applied the collected words to the program of Ucinet6, visualized them, and conducted a CONCOR analysis to grasp the similar relationship of words and to identify the cluster of common factors. As a result of the analysis, the clusters related to the 2019 Gwangju World Swimming Championships mainly consisted of four major areas of recognition and perception, mainly searching for operational aspects related to the swimming championship, and the community related to the 2019 Gwangju World Swimming Masters Competition Is mainly searched for the promotion of the Masters Competition and the aspect of the competition divided into two areas of major recognition and peripheral recognition. The cluster related to the problems of the 2019 Gwangju World Swimming Championships is divided into five areas, And they are mainly searching for the place, operation, institution, event, etc. of the problem of the swimming championship.

Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts (소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발)

  • Lee, Ju-Kyung;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.42-57
    • /
    • 2022
  • This study aims to create a basic model for classifying the activity photos that urban park users shared on social media using Deep Learning through Artificial Intelligence. Regarding the social media data, photos related to urban parks were collected through a Naver search, were collected, and used for the classification model. Based on the indicators of Naturalness, Potential Attraction, and Activity, which can be used to evaluate the characteristics of urban parks, 21 classification categories were created. Urban park photos shared on Naver were collected by category, and annotated datasets were created. A custom CNN model and a transfer learning model utilizing a CNN pre-trained on the collected photo datasets were designed and subsequently analyzed. As a result of the study, the Xception transfer learning model, which demonstrated the best performance, was selected as the urban park user activity image classification model and evaluated through several evaluation indicators. This study is meaningful in that it has built AI as an index that can evaluate the characteristics of urban parks by using user-shared photos on social media. The classification model using Deep Learning mitigates the limitations of manual classification, and it can efficiently classify large amounts of urban park photos. So, it can be said to be a useful method that can be used for the monitoring and management of city parks in the future.

Analyzing Perceptions of Unused Facilities in Rural Areas Using Big Data Techniques - Focusing on the Utilization of Closed Schools as a Youth Start-up Space - (빅데이터 분석 기법을 활용한 농촌지역 유휴공간 인식 분석 - 청년창업 공간으로써 폐교 활용성을 중심으로 -)

  • Jee Yoon Do;Suyeon Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.556-576
    • /
    • 2023
  • This study attempted to find a way to utilize idle spaces in rural areas as a way to respond to rural extinction. Based on the keywords "startup," "youth start-up," and "youth start-up+rural," start-up+rural," the study sought to identify the perception of idle facilities in rural areas through the keywords "Idle facilities" and "closed schools." The study presented basic data for policy direction and plan search by reviewing frequency analysis, major keyword analysis, network analysis, emotional analysis, and domestic and foreign cases. As a result of the analysis, first, it was found that idle facilities and school closures are acting importantly as factors for regional regeneration. Second, in the case of youth startups in rural areas, it was found that not only education on agriculture but also problems for residence should be solved together. Third, in the case of young people, it was confirmed that it was necessary to establish digital utilization for agriculture by actively starting a business using digital. Finally, in order to attract young people and revitalize the region through best practices at home and abroad, policy measures that can serve as various platforms such as culture and education as well as startups should be presented in connection with local residents. These results are significant in that they presented implications for youth start-ups in rural areas by reviewing start-up recognition for the influx of young people as one of the alternatives for the use of idle facilities and regional regeneration, and if additional solutions are presented through field surveys, they can be used to set policy goals that fit the reality.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

The Method for Real-time Complex Event Detection of Unstructured Big data (비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법)

  • Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.99-109
    • /
    • 2012
  • Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.

The current state and prospects of travel business development under the COVID-19 pandemic

  • Tkachenko, Tetiana;Pryhara, Olha;Zatsepina, Nataly;Bryk, Stepan;Holubets, Iryna;Havryliuk, Alla
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.664-674
    • /
    • 2021
  • The relevance of this scientific research is determined by the negative impact of the COVID-19 pandemic on the current trends and dynamics of world tourism development. This article aims to identify patterns of development of the modern tourist market, analysis of problems and prospects of development in the context of the COVID-19 pandemic. Materials and methods. General scientific methods and methods of research are used in the work: analysis, synthesis, comparison, analysis of statistical data. The analysis of the viewpoints of foreign and domestic authors on the research of the international tourist market allowed us to substantiate the actual directions of tourism development due to the influence of negative factors connected with the spread of a new coronavirus infection COVID-19. Economic-statistical, abstract-logical, and economic-mathematical methods of research were used during the process of study and data processing. Results. The analysis of the current state of the tourist market by world regions was carried out. It was found that tourism is one of the most affected sectors from COVID-19, as, by the end of 2020, the total number of tourist arrivals in the world decreased by 74% compared to the same period in 2019. The consequence of this decline was a loss of total global tourism revenues by the end of 2020, which equaled $1.3 trillion. 27% of all destinations are completely closed to international tourism. At the end of 2020, the economy of international tourism has shrunk by about 80%. In 2020 the world traveled 98 million fewer people (-83%) relative to the same period last year. Tourism was hit hardest by the pandemic in the Asia-Pacific region, where travel restrictions are as strict as possible. International arrivals in this region fell by 84% (300 million). The Middle East and Africa recorded declines of 75 and 70 percent. Despite a small and short-lived recovery in the summer of 2020, Europe lost 71% of the tourist flow, with the European continent recording the largest drop in absolute terms compared with 2019, 500 million. In North and South America, foreign arrivals declined. It is revealed that a significant decrease in tourist flows leads to a massive loss of jobs, a sharp decline in foreign exchange earnings and taxes, which limits the ability of states to support the tourism industry. Three possible scenarios of exit of the tourist industry from the crisis, reflecting the most probable changes of monthly tourist flows, are considered. The characteristics of respondents from Ukraine, Germany, and the USA and their attitude to travel depending on gender, age, education level, professional status, and monthly income are presented. About 57% of respondents from Ukraine, Poland, and the United States were planning a tourist trip in 2021. Note that people with higher or secondary education were more willing to plan such a trip. The results of the empirical study confirm that interest in domestic tourism has increased significantly in 2021. The regression model of dependence of the number of domestic tourist trips on the example of Ukraine with time tendency (t) and seasonal variations (Turˆt = 7288,498 - 20,58t - 410,88∑5) it forecast for 2020, which allows stabilizing the process of tourist trips after the pandemic to use this model to forecast for any country. Discussion. We should emphasize the seriousness of the COVID-19 pandemic and the fact that many experts and scientists believe in the long-term recovery of the tourism industry. In our opinion, the governments of the countries need to refocus on domestic tourism and deal with infrastructure development, search for new niches, formats, formation of new package deals in new - domestic - segment (new products' development (tourist routes, exhibitions, sightseeing programs, special rehabilitation programs after COVID) -19 in sanatoriums, etc.); creation of individual offers for different target audiences). Conclusions. Thus, the identified trends are associated with a decrease in the number of tourist flows, the negative impact of the pandemic on employment and income from tourism activities. International tourism needs two to four years before it returns to the level of 2019.

A Comparative Analysis of 'Function' and 'Achievement Standard' Presented in the 2015 Revised Middle School Common Curriculum and Home Economics Curriculum (2015 개정 중학교 공통 교과와 가정과 교육과정에 제시된 '기능'과 '성취기준' 비교 분석)

  • Kim, Eun Kyung;Lee, Young Sun;Gham, Kyoung Won;Cha, Ji Hye;Park, Mi Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.1
    • /
    • pp.17-35
    • /
    • 2021
  • The purpose of this study is to derive implications for the development of the next home economics curriculum by comparing the 'function' and 'achievement standard' presented in the 14 subjects of the 2015 revised middle school common curriculum with the home economics curriculum. For this, keyword network analysis was conducted, and the results are as follows. First, in the 'function' of the 2015 revised middle school common curriculum, 'analysis, use, and expression' were found to be core function keywords with high Degree Centrality and the Eigenvector Centrality. Second, the functional keywords 'understanding, explanation, expression, analysis, and use' in the 'achievement standard' of the 2015 revised middle school common curriculum appeared with high frequency, and 'practice, problem-solving, search and reasoning' which are related to practical problem-solving ability appeared. It was confirmed that 'appreciation, solution and realization', which have relatively high Eigenvector Centrality, were core functional keywords used in the 'achievement standard'. Third, when the 'function' and 'achievement standard' of the 2015 revised middle school home economics curriculum were matched and compared, 7 out of 15 functions were not used in the statement of 'achievement standard', so the connection between 'function' and 'achievement standard' appeared to be insufficient. In addition, the diversity of functional keyword used in the 'achievement standard' was also found insufficient when compared to the middle school common curriculum. Therefore, this study propose strengthening the connectivity of 'function' and 'achievement standard' in the next home economics curriculum, using keywords such as 'analyze', 'express', 'compare', 'understand', 'interpret', 'explore', 'appreciate', and 'solve'.

New Platform of Orientalism-Based Design Education (동양성 기반의 디자인 교육의 새로운 플랫폼)

  • Choi, Kyung Ran
    • Korea Science and Art Forum
    • /
    • v.20
    • /
    • pp.455-464
    • /
    • 2015
  • As the recognition toward the Korean design education development to nurture creative talents for the future society has been expanded recently, various supports and promoting strategies are being suggested. This study suggests the orientalism-based new design education platform in design education field to nurture creative talents. To have the competitiveness of creative talent nurturing, the system and education programs to rear creative talents are required. The purpose of this study is to suggest the new platform for the change of direction in design education and search for the methods in detail. The research process can be described as following: First, this study stated about the research background and its boundary. Based on the literature review and the condition of the crisis of Korean design education (Korean Industrial Statistic Investigation), it described the current condition and the characteristics. Second, this study stated about the education which will be disappeared in the information society, the change of direction in design education, and the new platform. In the current study, the change toward the strategies that give priority to the growth strategies on the knowledge-based industry was stated. Third, this study stated about that the future design education should be centered on the orientalism-based creativity in the trend changing to the six conditions for the future talents and the beliefs and values toward Asia, and what methods should be sought to achieve this trend. It suggested focusing on the aim for the direction for College education and its program curriculums as the solutions in detail. Fourth, based on the contents stated earlier in this study, it stated synthetically the direction of practice through the network of the design cluster and derived the implications. In conclusion, based on the recent orientalism-based mind, this study suggested the ways to find the identity of Korean design education itself and have the competitiveness in design education programs. The ways to secure them is to come from the integrated system innovation of the network. By actively applying the design clusters, colleges and universities, designers, studios, government policy organizations, design institutes, corporates, media, and fairs, this study suggests the sustainable education system and the practical methods.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.