• 제목/요약/키워드: Network Position

검색결과 1,448건 처리시간 0.033초

CAN 시간지연에 대한 아라고 진자의 위치제어 성능분석 (Analysis of the Position Control Performance under the Time Delay in the Controller Area Network)

  • 박태동;이재호;윤수진;박기헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.354-356
    • /
    • 2006
  • In this paper, the position control performance of networked control systems is analyzed when time delay through the network is considered. Integrating a control system into a network has great advantages over the traditional control system which uses point to point connection: it allows remarkable reduction in wiring, makes it easy to install and maintain the system, and improves compability. However, a networked control system has the critical defect that network uncertainties, such as time delay, can degrade the control system's performance. Therefore, the major concern of a networked control system is analyzing the effect of network uncertainties. This paper is concerned with PID controller performance for stability region, critical stability region and unstability region under the time delay in the Controller Area Network.

  • PDF

학술논문의 저자키워드 출현순서에 따른 저자키워드 중요도 측정을 위한 네트워크 분석방법의 적용에 관한 연구 (A Study on the Application to Network Analysis on the Importance of Author Keyword based on the Position of Keyword)

  • 권선영
    • 정보관리학회지
    • /
    • 제31권2호
    • /
    • pp.121-142
    • /
    • 2014
  • 본 연구는 학술논문의 저자키워드 출현순서에 따른 저자키워드의 중요도를 측정해보고자 하는 연구이다. 먼저 출현순서에 따른 저자키워드의 특징을 분석한 후 네트워크 분석 방법의 연결정도중심성, 근접중심성, 매개중심성, 위세중심성, 그리고 네트워크의 구조적공백성의 효과크기와 같은 지수를 사용하여 학술논문의 저자키워드 출현순서에 따른 저자키워드의 중요도를 측정해보았으며 각각의 네트워크 지수와 저자키워드의 출현순서와의 상관관계분석을 수행하였다. 네트워크 분석 지수 중 연결정도중심성 지수, 매개중심성 지수의 경우 각 학문분야별 저자키워드의 출현순서와의 상관관계의 결과에서의 유의한 분야의 수가 비교적 다른 지수에 비해 많았다. 이와 같은 결과를 통해 저자키워드의 중요도를 단지 출현빈도만으로 판단했던 것에서 벗어나 저자키워드의 중요도 측정을 위한 방법으로 연결정도중심성 지수, 매개중심성 지수도 고려해 볼 수 있음을 알 수 있었다.

변형된 칼만 필터를 이용한 이동 로봇의 위치 추정 (Position estimation of mobile robot using modified kalman filter)

  • 강성호;정경권;이용구;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.1005-1006
    • /
    • 2006
  • This paper proposes a method of position estimating through compensating the autonomous mobile robot's noise. Proposed method is that estimated position error by modified Kalman filter method using neural network. We use a neural network for measurement noise covariance and system noise covariance. In order to verify the effectiveness of the proposed method, we performed experiments for position estimation. The results show that convergence and position error is reduced than the Kalman filter method.

  • PDF

Position Estimation of Mobile Robots using Multiple Active Sensors with Network

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.280-285
    • /
    • 2011
  • Recently, with the development of service robots and the concept of ubiquitous, the position estimation of mobile objects has received great interest. Some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter. The RFID receiver gets the synchronization signal from the mobile robot and the ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can acquire the ultrasonic signals from only one or two beacons, due to the obstacles located along the moving path. In this paper, a position estimation scheme using fewer than three sensors is developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

신경회로망을 이용한 비선형 시스템 제어의 실험적 연구 (Experimental Studies of neural Network Control Technique for Nonlinear Systems)

  • 정슬;임선빈
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

신경회로망을 이용한 2상 하이브리드 리니어 펄스 모터의 힘 리플 감소 (Force Ripple Reduction of 2 Phase Hybrid Lineny Pulse Motor using Neural Network)

  • 김유신;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.362-362
    • /
    • 2000
  • The purpose of this thesis is to reduce force ripple of linear pulse motor(LPM) using neural network and to enhance precision. In order to this, we propose a new controller using a neural network to compensate disturbances. The structure includes adaptation block which learns the dynamics of the periodic disturbance and forces the interferences, caused by disturbances. The proposed controller compensates an unmodeled dynamics in the LPM. The neural network changes a current command to reduce position error and force ripple of the LPM. We compare proposed controller with PI controller. Simulation result shows that the proposed controller has better performance than a PI controller without neural network.

  • PDF

V2I 통신을 이용한 교통류 분산제어 전략 수립 및 평가 (Evaluating of Traffic Flow Distributed Control Strategy on u-TSN(ubiquitous-Transportation Sensor Network))

  • 김원규;이민희;강경원;김병종;강연수;오철;김송주
    • 정보통신설비학회논문지
    • /
    • 제8권3호
    • /
    • pp.122-131
    • /
    • 2009
  • Ubiquitous-Transportation sensor network is able to realize a vehicle ad-hoc network. Since there are some problems in an existing ITS system, the new technology and traffic information strategies are requirements in this advanced system, u-TSN. The purposes of this paper is to introduce the components on u-TSN system, establish new traffic strategies for this system, and then evaluate these strategies by making a comparative study of ITS and using micro traffic simulator, AIMSUN. The strategy evaluated by AIMSUN is position-based multicast strategy which provides traffic information to vehicles using V2I (vehicle to Infrastructure) communication. This paper focuses on the providing real-time route guidance information when congestion is occurred by the incidents. This study estimates total travel time on each route by API modules. Result from simulation experiments suggests that position-based multicast strategy can achieve more optimal network performance and increased driver satisfaction since the total accumulated travel times of both the major road and the total system on position-based multicast strategy are less than those on VMS.

  • PDF

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

A Comparison of Structural Position and Exploitative Innovation Based on a Patent Citation Network of the Top 100 Digital Companies

  • Hyun Mo Kang;Il Young Choi;Jae Kyeong Kim;Hyun Joo Shin
    • Asia pacific journal of information systems
    • /
    • 제31권3호
    • /
    • pp.358-377
    • /
    • 2021
  • Knowledge drives business innovation. However, even if companies have the same knowledge element in the business ecosystem, innovation performance varies depending on the structural position of the technical knowledge network. This study investigated whether there is a difference in exploitative innovation according to the structural position of the AI technical knowledge network. We collected patents from the top 100 digital companies registered with the US Patent Office from 2015 to 2019 and classified the companies into knowledge producer-based brokers, knowledge absorber-based brokers, knowledge absorbers, and knowledge producers from the perspective of knowledge creation and flow. The analysis results are as follows. First, a few of the top 100 digital companies disseminate, absorb, and mediate knowledge, while the majority do not. Second, exploitative innovation is the largest, in the order of knowledge producer, knowledge absorber-based broker, knowledge absorber, and knowledge producer-based broker. Finally, patents for industrial intelligence occupy a large proportion, and knowledge producers are leading exploitative innovation. Therefore, latecomers need to expand their resources and capabilities by citing patents owned by leading companies and converge with existing industries into AI-based industries.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.