• Title/Summary/Keyword: Network Model

Search Result 12,338, Processing Time 0.046 seconds

A Study on the Transient State of Deep Bed Filtration by the Network Model (Network 모델을 이용한 입상여과공정의 전이상태 해석에 대한 연구)

  • Choo, Changupp
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • Collection efficiencies and pressure drops for the removal of small particles from dilute liquid suspensions by granular bed filter were calculated using network model. The network model is composed of a number of nodes connected with cylindrical bond and particles are deposited on the bond surface. The collection efficiency of each cylindrical bond was predicted using unit cell model corresponding to the pore volume of cylindrical pore both at the initial and transient states. Deposited particles on the collector surface may act as additional collector and reduce the pore size of the collector. As a result, the collection efficiency was improved and pressure drop increased with deposition. Even though the stochastic nature of network requires a large number of simulation work, the model proposed in this study can be used in investigating collection efficiency and pressure drop.

  • PDF

High-Capacity Robust Image Steganography via Adversarial Network

  • Chen, Beijing;Wang, Jiaxin;Chen, Yingyue;Jin, Zilong;Shim, Hiuk Jae;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.366-381
    • /
    • 2020
  • Steganography has been successfully employed in various applications, e.g., copyright control of materials, smart identity cards, video error correction during transmission, etc. Deep learning-based steganography models can hide information adaptively through network learning, and they draw much more attention. However, the capacity, security, and robustness of the existing deep learning-based steganography models are still not fully satisfactory. In this paper, three models for different cases, i.e., a basic model, a secure model, a secure and robust model, have been proposed for different cases. In the basic model, the functions of high-capacity secret information hiding and extraction have been realized through an encoding network and a decoding network respectively. The high-capacity steganography is implemented by hiding a secret image into a carrier image having the same resolution with the help of concat operations, InceptionBlock and convolutional layers. Moreover, the secret image is hidden into the channel B of carrier image only to resolve the problem of color distortion. In the secure model, to enhance the security of the basic model, a steganalysis network has been added into the basic model to form an adversarial network. In the secure and robust model, an attack network has been inserted into the secure model to improve its robustness further. The experimental results have demonstrated that the proposed secure model and the secure and robust model have an overall better performance than some existing high-capacity deep learning-based steganography models. The secure model performs best in invisibility and security. The secure and robust model is the most robust against some attacks.

A Capacity Planning Framework for a QoS-Guaranteed Multi-Service IP network (멀티서비스를 제공하는 IP 네트워크에서의 링크용량 산출 기법)

  • Choi, Yong-Min
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.327-330
    • /
    • 2007
  • This article discusses a capacity planning method in QoS-guaranteed IP networks such as BcN (Broadband convergence Network). Since IP based networks have been developed to transport best-effort data traffic, the introduction of multi-service component in BcN requires fundamental modifications in capacity planning and network dimensioning. In this article, we present the key issues of the capacity planning in multi-service IP networks. To provide a foundation for network dimensioning procedure, we describe a systematic approach for classification and modeling of BcN traffic based on the QoS requirements of BcN services. We propose a capacity planning framework considering data traffic and real-time streaming traffic separately. The multi-service Erlang model, an extension of the conventional Erlang B loss model, is introduced to determine required link capacity for the call based real-time streaming traffic. The application of multi-service Erlang model can provide significant improvement in network planning due to sharing of network bandwidth among the different services.

  • PDF

Verifying Active Network Applications (액티브 네트워크 응용의 검증)

  • Park, Jun-Cheol
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.510-523
    • /
    • 2002
  • The routers in an active network perform customized computations on the messages flowing through them, while the role of routers in the traditional packet network, such as the Internet, is to passively forward packets as fast as possible. In contrast to the Internet, the processing in active networks can be customized on a per user or per application basis. Active networks allow users to inject information into the network, where the information describes or controls a program to be executed for the users by the routers as well as the end hosts. So the network users can realize the active networks by "programming" the network behavior via the programming interface exposed to them. In this paper, we devise a network protocol model and present a verification technique for reasoning about the correctness of an active application defined using the model. The technique is developed in a platform- and language-independent way, and it is algorithmic and can be automated by computer program. We give an example dealing with network auction to illustrate the use of the model and the verification technique.

Optimization of Cyber-Attack Detection Using the Deep Learning Network

  • Duong, Lai Van
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.159-168
    • /
    • 2021
  • Detecting cyber-attacks using machine learning or deep learning is being studied and applied widely in network intrusion detection systems. We noticed that the application of deep learning algorithms yielded many good results. However, because each deep learning model has different architecture and characteristics with certain advantages and disadvantages, so those deep learning models are only suitable for specific datasets or features. In this paper, in order to optimize the process of detecting cyber-attacks, we propose the idea of building a new deep learning network model based on the association and combination of individual deep learning models. In particular, based on the architecture of 2 deep learning models: Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), we combine them into a combined deep learning network for detecting cyber-attacks based on network traffic. The experimental results in Section IV.D have demonstrated that our proposal using the CNN-LSTM deep learning model for detecting cyber-attacks based on network traffic is completely correct because the results of this model are much better than some individual deep learning models on all measures.

A Streamfiow Network Model for Daily Water Supply and Demands on Small Watershed (III) -Model Validation and Applications- (중소유역의 일별 용수수급해석을 위한 하천망모형의 개발(III) -하천망모형의 검증과 적용-)

  • 허유만;박승우;박창헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.23-35
    • /
    • 1993
  • The objectives of this paper were to validate the proposed network flow model using field data and to demonstrate the model applicability for various purposes. The model was tested with data from the Banweol watershed, where an intentive streamflow gauging system has been established. Model parameters were not calibrated with field data so that it can be validated as ungaged conditions. Three different schemes were employed to represent the drainage system of the tested watershed : a single, complex, and detailed network. The single network assumed the watershed as a cell, while complex and detailed networks considered several cells. The results from different schemes were individually compared satisfactorily to the observed daily stages at the Banweol reservoir located at the outlet of the watershed. The results from three schemes were in close agreement with each other, Justifying that the model performs very well for different network schemes being used. Daily streamflow from three network schemes was compared for a selected reach within the watershed. The results were very close to each other regardless of network formulation. And the model was applied to simulate daily streamflow before and after the construction of a reservoir at a reach. The differences were discussed, which reflected the influences of the dam construction upon the downstream hydrology. Similar appliocations may be possible to identify the effects of hydraulic structures on streamflow.

  • PDF

Development of models for evaluating the short-circuiting arc phenomena of gas metal arc welding (GMA 용접의 단락이행 아크 현상의 평가를 위한 모델 개발)

  • 김용재;이세헌;강문진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.454-457
    • /
    • 1997
  • The purpose of this study is to develop an optimal model, using existing models, that is able to estimate the amount of spatter utilizing artificial neural network in the short circuit transfer mode of gas metal arc (GMA) welding. The amount of spatter generated during welding can become a barometer which represents the process stability of metal transfer in GMA welding, and it depends on some factors which constitute a periodic waveforms of welding current and arc voltage in short circuit GMA welding. So, the 12 factors, which could express the characteristics for the waveforms, and the amount of spatter are used as input and output variables of the neural network, respectively. Two neural network models to estimate the amount of spatter are proposed: A neural network model, where arc extinction is not considered, and a combined neural network model where it is considered. In order to reduce the calculation time it take to produce an output, the input vector and hidden layers for each model are optimized using the correlation coefficients between each factor and the amount of spattcr. The est~mation performance of each optimized model to the amount of spatter IS assessed and compared to the est~mation performance of the model proposed by Kang. Also, through the evaluation for the estimation performance of each optimized model, it is shown that the combined neural network model can almost perfectly predict the amount of spatter.

  • PDF

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • Oh, Kyong-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

Optimization of Neural Network Structure for the Efficient Bushing Model (효율적인 신경망 부싱모델을 위한 신경망 구성 최적화)

  • Lee, Seung-Kyu;Kim, Kwang-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.

A network traffic prediction model of smart substation based on IGSA-WNN

  • Xia, Xin;Liu, Xiaofeng;Lou, Jichao
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.366-375
    • /
    • 2020
  • The network traffic prediction of a smart substation is key in strengthening its system security protection. To improve the performance of its traffic prediction, in this paper, we propose an improved gravitational search algorithm (IGSA), then introduce the IGSA into a wavelet neural network (WNN), iteratively optimize the initial connection weighting, scalability factor, and shift factor, and establish a smart substation network traffic prediction model based on the IGSA-WNN. A comparative analysis of the experimental results shows that the performance of the IGSA-WNN-based prediction model further improves the convergence velocity and prediction accuracy, and that the proposed model solves the deficiency issues of the original WNN, such as slow convergence velocity and ease of falling into a locally optimal solution; thus, it is a better smart substation network traffic prediction model.