Recently, convolutional neural networks (CNNs) have been widely used with excellent performance in various computer vision fields, including super-resolution (SR). However, CNN is computationally intensive and requires a lot of memory, making it difficult to apply to limited hardware resources such as mobile or Internet of Things devices. To solve these limitations, network lightening studies have been actively conducted to reduce the depth or size of pre-trained deep CNN models while maintaining their performance as much as possible. This paper aims to lighten the SR CNN model, SRGAN, using the knowledge distillation among network lightening technologies; thus, it proposes four techniques with different methods of transferring the knowledge of the teacher network to the student network and presents experiments to compare and analyze the performance of each technique. In our experimental results, it was confirmed through quantitative and qualitative evaluation indicators that student networks with knowledge transfer performed better than those without knowledge transfer, and among the four knowledge transfer techniques, the technique of conducting adversarial learning after transferring knowledge from the teacher generator to the student generator showed the best performance.
In this paper, a sensor network system for providing intelligent home network services is suggested. It steadily collects biological data of resident people and automatically detects emergency situations LEID(Lighting Embedded Information Device) system are the most essential component of the sensor network. They embed sensor network technology into lightening devices which are indispensable most living spaces. To verify practicality of the proposed intelligent home network service system, a prototypical system is realized in the Smart Home Industrialization Support Center at Kookmin University, and is tested within many practical circumstances.
Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.
본 논문에서는 유헬스(u-Health) 서비스를 제공하는 센서 네트워크 시스템을 제안한다. 본 시스템은 거주자의 생체 정보를 수집하고 응급 상황을 자동으로 판단한다. LEID(Lighting Embedded Information Device)는 센서 네트워크에 이용 되는 장치로서 생활공간에 필요 불가결한 조명 기기에 센서 네트워크 기술을 접목시킨 장치이다. 본 논문에서 제안한 유헬스 시스템의 실용성 검증을 위해 국민대학교에 위치한 지능형 홈 센터에 설치하였고 실생활을 가정하여 시험하였다. 본 논문에서 제안한 유헬스 시스템은 지속적인 관리가 필요한 환자가 있는 기관에 사용될 수 있다.
본 연구는 전력계통의 절연에 가장 가혹한 영향을 미치는 뇌충격 전압에 대한 50% FOV와 V-t 특성 및 코로나 진전 과정을 불평등 전계중에서 순수 $SF_6, N_2, SF_6-N_2$혼합가스 분위기에서 연구하여 SF6-N2 혼합가스의 파괴과정과 경제적 실용 가능성에 대해서 검토하였다. 실험결과 $SF_6$ 50%-$N_2$ 50% 혼합가스의 50% FOV는 순수 $SF_6$의 80%보다 높다. 또 V-t 특성의 측정치와 등면적 법칙으로 계산된 곡선은 각 경우에 일치했다. 따라서 순수 $SF_6$에 대한 경제적 대체가스로서 SF6 50%-$N_2$ 50% 혼합가스가 사용되어질 수 있다는 것을 알 수 있었다. 또한 방전 도형을 이용한 코로나 진전과정 분석으로 이를 입증했다.
A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.
Recently, various convergence technologies are attracting attention due to the block chain innovation technology in the M2M environment. Although the block-chain-based technology is known to be secure in its own right, there are various problems such as security and weight reduction in various M2M environments connected with this. In this paper, we propose a new lightweight method for the hash tree generation of block chains to solve the lightweight problem. It is designed considering extensibility without affecting the existing block chain. Performance analysis shows that the computation performance increases with decreasing the existing hash length.
최근 CNN(Convolutional Neural Network)은 초해상화(super-resolution)를 포함한 다양한 컴퓨터 비전 분야에서 우수한 성능을 보이며 널리 사용되고 있다. 그러나 CNN은 계산 집약적이고 많은 메모리가 요구되어 한정적인 하드웨어 자원인 모바일이나 IoT(Internet of Things) 기기에 적용하기 어렵다는 문제가 있다. 이런 한계를 해결하기 위해, 기 학습된 깊은 CNN 모델의 성능을 최대한 유지하며 네트워크의 깊이나 크기를 줄이는 경량화 연구가 활발히 진행되고 있다. 본 논문은 네트워크 경량화 기술인 지식증류(knowledge distillation) 중 자가증류(self-distillation)를 초해상화 CNN 모델에 적용하여 성능을 평가, 분석한다. 실험 결과, 정량적 평가지표를 통하여 자가증류를 통해서도 성능이 우수한 경량화된 초해상화 모델을 얻을 수 있음을 확인하였다.
이동성 객체인 이동에이전트는 이주 시 주어진 작업처리 명령들과 작업수행 결과 탑재에 의한 크기 증가로 인하여 네트워크의 부하를 유발함으로써 이주시간 지연 및 이주 신뢰성을 훼손한다. 본 논문에서는 분산객체 기술을 이용한 이동에이전트의 경량화 방법과 네트워크 트래픽 발생 시능동적으로 최적의 이주경로를 탐색 및 제공하는 알고리즘을 제시하고, 에이전트 이주 시 이들을 적용함으로써 이동에이전트의 이주 신뢰성을 보장하는 방법을 제안한다. 또한, 센서 네트워크 기반 이동에이전트 미들웨어 환경에서 능동규칙 탑재 이동에이전트의 이주시간에 대한 에이전트의 크기와 네트워크 트래픽 발생에 따른 비교 및 분석 실험을 통하여, 제안 방법 적용 시 이동에이전트의 자율성과 이주 신뢰성이 보장됨을 입증한다.
Choi, In Hyuk;Park, Joon Young;Kim, Tae Gyun;Yoon, Yong Beum;Yi, Junsin
Transactions on Electrical and Electronic Materials
/
제18권3호
/
pp.151-154
/
2017
In this article, we investigated the various influencing factors that degraded the lifetime of suspension insulators in 154 kV transmission lines, and showed the possible solutions to avoid such breakdowns. With respect to achieve safety, reliability and aesthetical considerations, the characteristics of transmission and distribution network power cables should be improved. Suspension insulators are particularly important to study, as they have developed to be the main component of transmission lines due to their ability to withstand the electrical conductivity of high-voltage power transmission. Suspension insulators are mostly made from glass, rubber and ceramic material due to their high resistivity. In Korea, porcelain suspension insulators are typically used in the transmission line system, as they are cheaper and more flexible compared to other types of insulators. This is effective from preventing very high and steep lightening impulse voltages from causing the breakdown of suspension insulators used in power lines. Other influential factors affect the lifetime of suspension insulators that we studied include temperature, water moisture, contamination, mechanical vibration and electrical stress.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.