• 제목/요약/키워드: Network Latency

검색결과 763건 처리시간 0.032초

Seamless Mobility Management in IP-based Wireless/Mobile Networks with Fast Handover

  • Park, Byung-Joo;Hwang, Eun-Sang;Park, Gil-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권3호
    • /
    • pp.266-284
    • /
    • 2009
  • The challenges of rapidly growing numbers of mobile nodes in IPv6-based networks are being faced by mobile computing researchers worldwide. Recently, IETF has standardized Mobile IPv6 and Fast Handover for Mobile IPv6(FMIPv6) for supporting IPv6 mobility. Even though existing literatures have asserted that FMIPv6 generally improves MIPv6 in terms of handover speed, they did not carefully consider the details of the whole handover procedures. Therefore, in conventional protocols, the handover process reveals numerous problems manifested by a time-consuming network layer based movement detection and latency in configuring a new care of address with confirmation. In this article, we study the impact of the address configuration and confirmation procedure on the IP handover latency. To mitigate such effects, we propose a new scheme which can reduce the latency taken by the movement detection, address configuration and confirmation from the whole handover latency. Furthermore, a mathematical analysis is provided to show the benefits of our scheme. In the analysis, various parameters are used to compare our scheme with the current procedures, while our approach is focused on the reduction of handover latency. Finally, we demonstrate total handover scenarios for the proposed techniques and discussed the major factors which contribute to the handover latency.

A Simulation to Test Join Latency for PIM-DM Multicast (PIM-DM 멀티캐스트에서 그룹 가입 지연시간에 대한 성능 모의 실험)

  • Kim, Han-Soo;Jang, Ju-Wook
    • The KIPS Transactions:PartC
    • /
    • 제10C권2호
    • /
    • pp.179-184
    • /
    • 2003
  • One of the remarkable problems in PIM-DM (Protocol Independent Multicast - Dense Mode) is the join latency time, increasing for specific periods. The reason of this problem is proved to the confusion of flooding prune message and leave prune message. We propose a new solution to this problem, reducing the average join latency by 37.4%, and prove the proposed solution by network simulation.

LLHS: Low Latency Handoff Scheme based on Buffering for Mobile Networks (이동망에서 버퍼링에 기반한 핸드오프 지연감소기법)

  • Rho, Kyung-Taeg;Chung, Dong-Kun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제8권5호
    • /
    • pp.105-111
    • /
    • 2008
  • Mobility support for mobile networks will be important to minimize the packet overhead, to optimize routing, to reduce handoff latency, and to reduce the volume of handoff signals. Mobile IPv6 (MIPv6) and Hierarchical MIPv6 (HMIPv6) are one of mobility management protocols (MMPs) that provides network layer mobility over all access technologies. However, the communication quality of these candidates is severely degraded during handoffs. As another way to improve the handoff performance of a mobile network by conventional MMPs such as MIPv6 and HMIPv6, we propose a Low Latency Handoff Scheme (LLHS) combining Fast MIPv6 (FMIPv6) with HMIPv6 extension with buffering function, in which Mobility Anchor Points (MAPs) buffer packets destined to the Mobile Routers (MRs) or MNs within a mobile network during handoffs. The simulation results show that the proposed scheme reduces transmission delay and packet loss in UDP communication.

  • PDF

Perfomance Evaluation of efficent handover Latency Using MIH Services in MIPv4 (MIH를 이용한 효율적인 MIPv4망의 구성에 관한 연구)

  • Kim, Ki-Yong;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.75-78
    • /
    • 2007
  • Mobile IP provides hand-held devices with mobility which allows the user to do work over the network. However, handover time due transfer between access routers causes network delays and data loss. L2Trigger Handover expects this handover to take place, and executes L3 handover before L2 handover takes place, thereby reducing overall handover latency, although it still is an issue since handover latency between AR is not completely eliminated in L2 trigger handover. In this paper took into consideration where MIH is used in MIPv4 and using MIH Table when handover is about to occur in MN(Mobile Node), thereby pre-fetching data needed by Handover. In this way, when the handover is estimated, it improves the init time that L2trigger had. Furthermore we can find that we can execute the handover with shorten init time in smaller and narrow overlap length

  • PDF

Advanced Fast Handover Scheme for Reliable Multimedia Communication in IP-based Wireless/Mobile Networks (안정적인 멀티미디어 통신을 위한 Mobile IPv6 네트워크에서 진보된 고속 핸드오버 기법)

  • Lee, Ki-Jeong;Park, Byung-Joo;Park, Gil-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제9권3호
    • /
    • pp.93-99
    • /
    • 2009
  • The Internet Engineering Task Force (lETF)proposed the Mobile IPv6 protocol to provide host mobility in IPv6-based network and to offer a standardized technology. However, Mobile IPv6 (MIPv6) is not applied in actual network because of long handover latency and packet loss problems. Therefore, to compensate these drawbacks, many studies are in progress and FMIPv6 (Fast handover for Mobile IPv6) is one of the studies that has been proposed to supplement the shortcomings of MIPv6. But there are problems occurred in using router tunneling which causes packet loss and out of sequence problems. In this paper, we propose an Advanced Mobile IPv6 (AMIPv6) protocol to minimize the handover latency when Mobile Node frequently moves in each subnet. We compared the performance analysis of AMIPv6 handover latency with MIPv6 handover latency in the same network environment to prove that AMIPv6 is more efficient.

  • PDF

QoS-aware Cross Layer Handover Scheme for High-Speed vehicles

  • Nashaat, Heba
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.135-158
    • /
    • 2018
  • High-Speed vehicles can be considered as multiple mobile nodes that move together in a large-scale mobile network. High-speed makes the time allowed for a mobile node to complete a handover procedure shorter and more frequently. Hence, several protocols are used to manage the mobility of mobile nodes such as Network Mobility (NEMO). However, there are still some problems such as high handover latency and packet loss. So efficient handover management is needed to meet Quality of Service (QoS) requirements for real-time applications. This paper utilizes the cross-layer seamless handover technique for network mobility presented in cellular networks. It extends this technique to propose QoS-aware NEMO protocol which considers QoS requirements for real-time applications. A novel analytical framework is developed to compare the performance of the proposed protocol with basic NEMO using cost functions for realistic city mobility model. The numerical results show that QoS-aware NEMO protocol improves the performance in terms of handover latency, packet delivery cost, location update cost, and total cost.

Task Scheduling in Fog Computing - Classification, Review, Challenges and Future Directions

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.89-100
    • /
    • 2022
  • With the advancement in the Internet of things Technology (IoT) cloud computing, billions of physical devices have been interconnected for sharing and collecting data in different applications. Despite many advancements, some latency - specific application in the real world is not feasible due to existing constraints of IoT devices and distance between cloud and IoT devices. In order to address issues of latency sensitive applications, fog computing has been developed that involves the availability of computing and storage resources at the edge of the network near the IoT devices. However, fog computing suffers from many limitations such as heterogeneity, storage capabilities, processing capability, memory limitations etc. Therefore, it requires an adequate task scheduling method for utilizing computing resources optimally at the fog layer. This work presents a comprehensive review of different task scheduling methods in fog computing. It analyses different task scheduling methods developed for a fog computing environment in multiple dimensions and compares them to highlight the advantages and disadvantages of methods. Finally, it presents promising research directions for fellow researchers in the fog computing environment.

Dynamic Resource Reservation for Ultra-low Latency IoT Air-Interface Slice

  • Sun, Guolin;Wang, Guohui;Addo, Prince Clement;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3309-3328
    • /
    • 2017
  • The application of Internet of Things (IoT) in the next generation cellular networks imposes a new characteristic on the data traffic, where a massive number of small packets need to be transmitted. In addition, some emerging IoT-based emergency services require a real-time data delivery within a few milliseconds, referring to as ultra-low latency transmission. However, current techniques cannot provide such a low latency in combination with a mice-flow traffic. In this paper, we propose a dynamic resource reservation schema based on an air-interface slicing scheme in the context of a massive number of sensors with emergency flows. The proposed schema can achieve an air-interface latency of a few milliseconds by means of allowing emergency flows to be transported through a dedicated radio connection with guaranteed network resources. In order to schedule the delay-sensitive flows immediately, dynamic resource updating, silence-probability based collision avoidance, and window-based re-transmission are introduced to combine with the frame-slotted Aloha protocol. To evaluate performance of the proposed schema, a probabilistic model is provided to derive the analytical results, which are compared with the numerical results from Monte-Carlo simulations.

An Efficient Scanning Group and Order Decision Method Using Neighbor Network Information in Wireless LAN (WLAN에서 이웃 네트워크 정보를 이용한 효율적인 스캐닝 그룹 및 순서 결정 방법)

  • Kang, Dong-Wan;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제35권2A호
    • /
    • pp.142-152
    • /
    • 2010
  • When a mobile station(MS) performs a handover, in the IEEE 802.11 WLAN, MS's channel scanning for discovering new available APs is the dominating factor in handover latency, accounting 90% of overall latency. In order to reduce such a scanning latency, we focus on the method for reducing the number of channels for the MS in handover process to scan. With the help of IEEE 802.21 information server(IS), a proper order of groups of channels to be scanned is offered by the current AP depending on the information of neighbor APs in terms of the distance from serving AP, traffic load and network topology. By using this scanning order, the passive scanning of a MS in normal operation enables the MS to filter out the unavailable channels, and thus to classify the candidate channels of neighbor APs into three groups. Then, a handover-imminent MS can perform the active scanning from the most reliable group of channels. Simulation results show that the proposed scanning scheme reduce the scanning latency in comparison with the conventional scheme.

An efficient session management scheme for low-latency communications in 5G systems

  • Kim, Jae-Hyun;Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • 제25권2호
    • /
    • pp.83-92
    • /
    • 2020
  • In this paper, we propose an efficient session management scheme for low-latency communications in 5G systems. The main idea of the proposed scheme is to prevent unnecessary reattempt signalling overhead when the session establishment for low-latency communications fails. Also, this method avoids network resource waste and battery drain of mobile devices. If a UE(User Equipment) fails to establish an Always-on PDU session for low-latency communications with the 5G systems because of network failure or resource unavailability, the proposed method prevents the UE's re-establishment of the Always-on PDU session by the specific information in the NAS(Non-Stratum) message from the 5G systems. Through simulation, we show that the proposed efficient session management scheme (ESMS) minimizes unnecessary signalling overhead and improves battery efficiency of mobile devices compared to existing legacy mechanism in 5G systems.