• Title/Summary/Keyword: Network Graph

Search Result 705, Processing Time 0.032 seconds

Analyses on the Workflow Critical Path (워크플로우 임계 경로에 관한 분석)

  • Son, Jin-Hyun;Chang, Duk-Ho;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.677-687
    • /
    • 2001
  • The critical path has been widely applied to many areas of computer engineering especially a directed acyclic graph. Its concept can also be useful in the context of a workflow. The workflow critical path is defined as a path which has the longest average execution time from the start activity to the end activity of workflow. Because there can be several concurrently executed workflow instances for a specific workflow a new method to determine the critical path should be developed. In this paper we specify our workflow queuing network model from which we can easily analyze many workflow characteristics. Based on this workflow model. we propose a method to identify the critical path In addition, we show come workflow areas which can utilze the critical path.

  • PDF

Identification of Profane Words in Cyberbullying Incidents within Social Networks

  • Ali, Wan Noor Hamiza Wan;Mohd, Masnizah;Fauzi, Fariza
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.24-34
    • /
    • 2021
  • The popularity of social networking sites (SNS) has facilitated communication between users. The usage of SNS helps users in their daily life in various ways such as sharing of opinions, keeping in touch with old friends, making new friends, and getting information. However, some users misuse SNS to belittle or hurt others using profanities, which is typical in cyberbullying incidents. Thus, in this study, we aim to identify profane words from the ASKfm corpus to analyze the profane word distribution across four different roles involved in cyberbullying based on lexicon dictionary. These four roles are: harasser, victim, bystander that assists the bully, and bystander that defends the victim. Evaluation in this study focused on occurrences of the profane word for each role from the corpus. The top 10 common words used in the corpus are also identified and represented in a graph. Results from the analysis show that these four roles used profane words in their conversation with different weightage and distribution, even though the profane words used are mostly similar. The harasser is the first ranked that used profane words in the conversation compared to other roles. The results can be further explored and considered as a potential feature in a cyberbullying detection model using a machine learning approach. Results in this work will contribute to formulate the suitable representation. It is also useful in modeling a cyberbullying detection model based on the identification of profane word distribution across different cyberbullying roles in social networks for future works.

Implementation of an APT Attack Detection System through ATT&CK-Based Attack Chain Reconstruction (ATT&CK 기반 공격체인 구성을 통한 APT 공격탐지 시스템 구현)

  • Cho, Sungyoung;Park, Yongwoo;Lee, Kyeongsik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.527-545
    • /
    • 2022
  • In order to effectively detect APT attacks performed by well-organized adversaries, we implemented a system to detect attacks by reconstructing attack chains of APT attacks. Our attack chain-based APT attack detection system consists of 'events collection and indexing' part which collects various events generated from hosts and network monitoring tools, 'unit attack detection' part which detects unit-level attacks defined in MITRE ATT&CK® techniques, and 'attack chain reconstruction' part which reconstructs attack chains by performing causality analysis based on provenance graphs. To evaluate our system, we implemented a test-bed and conducted several simulated attack scenarios provided by MITRE ATT&CK Evaluation program. As a result of the experiment, we were able to confirm that our system effectively reconstructed the attack chains for the simulated attack scenarios. Using the system implemented in this study, rather than to understand attacks as fragmentary parts, it will be possible to understand and respond to attacks from the perspective of progress of attacks.

A study on Wikidata linkage methods for utilization of digital archive records of the National Debt Redemption Movement (국채보상운동 디지털 아카이브 기록물의 활용을 위한 위키데이터 연계 방안에 대한 연구)

  • Seulki Do;Heejin Park
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.2
    • /
    • pp.95-115
    • /
    • 2023
  • This study designed a data model linked to Wikidata and examined its applicability to increase the utilization of the digital archive records of the National Debt Redemption Movement, registered as World Memory Heritage, and implications were derived by analyzing the existing metadata, thesaurus, and semantic network graph. Through analysis of the original text of the National Debt Redemption Movement records, key data model classes for linking with Wikidata, such as record item, agent, time, place, and event, were derived. In addition, by identifying core properties for linking between classes and applying the designed data model to actual records, the possibility of acquiring abundant related information was confirmed through movement between classes centered on properties. Thus, this study's result showed that Wikidata's strengths could be utilized to increase data usage in local archives where the scale and management of data are relatively small. Therefore, it can be considered for application in a small-scale archive similar to the National Debt Redemption Movement digital archive.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

Path Matching Algorithm for Bridges Puzzle (가교 퍼즐에 관한 경로 매칭 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.99-106
    • /
    • 2024
  • The problem of the bridges(Hasjiwokakero, Hasi) puzzle, which connects the bridge(edge) required by the island(vertex) without crossing the horizontal and vertical straight bridges except for the diagonal to form a connected network, is a barren ground for research without any related research. For this problem, there is no algorithm that presents a generalized exponential time brute-force or branch-and-bound method. This paper obtained the initial solution of the lattice graph by drawing a grid without diagonal lines for a given BP, removing unnecessary edges, and supplementing essential bridges. Next, through insufficient island pair path matching, the method of adding insufficient edges to the route and deleting the crossed surplus edges(bridges) was adopted. Applying the proposed algorithm to 24 benchmarking experimental data showed that accurate solutions can be obtained for all problems.

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

K-th Path Search Algorithms with the Link Label Correcting (링크표지갱신 다수경로탐색 알고리즘)

  • Lee, Mee-Young;Baik, Nam-Cheol;Choi, Dae-Soon;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.131-143
    • /
    • 2004
  • Given a path represented by a sequence of link numbers in a graph, the vine is differentiated from the loop in a sense that any link number can be visited in the path no more than once, while more than once in the loop. The vine provides a proper idea on complicated travel patterns such as U-turn and P-turn witnessed near intersections in urban transportation networks. Application of the link label method(LLM) to the shortest Path algorithms(SPA) enables to take into account these vine travel features. This study aims at expanding the LLM to a K-th path search algorithm (KPSA), which adopts the node-based-label correcting method to find a group of K number of paths. The paths including the vine type of travels are conceptualized as drivers reasonable route choice behaviors(RRCB) based on non-repetition of the same link in the paths, and the link-label-based MPSA is proposed on the basis of the RRCB. The small-scaled network test shows that the algorithm sequence works correctly producing multiple paths satisfying the RRCB. The large-scaled network study detects the solution degeneration (SD) problem in case the number of paths (K) is not sufficient enough, and the (K-1) dimension algorithm is developed to prevent the SD from the 1st path of each link, so that it may be applied as reasonable alternative route information tool, an important requirement of which is if it can generate small number of distinct alternative paths.

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".

Exploring ESG Activities Using Text Analysis of ESG Reports -A Case of Chinese Listed Manufacturing Companies- (ESG 보고서의 텍스트 분석을 이용한 ESG 활동 탐색 -중국 상장 제조 기업을 대상으로-)

  • Wung Chul Jin;Seung Ik Baek;Yu Feng Sun;Xiang Dan Jin
    • Journal of Service Research and Studies
    • /
    • v.14 no.2
    • /
    • pp.18-36
    • /
    • 2024
  • As interest in ESG has been increased, it is easy to find papers that empirically study that a company's ESG activities have a positive impact on the company's performance. However, research on what ESG activities companies should actually engage in is relatively lacking. Accordingly, this study systematically classifies ESG activities of companies and seeks to provide insight to companies seeking to plan new ESG activities. This study analyzes how Chinese manufacturing companies perform ESG activities based on their dynamic capabilities in the global economy and how they differ in their activities. This study used the ESG annual reports of 151 Chinese manufacturing listed companies on the Shanghai & Shenzhen Stock Exchange and ESG indicators of China Securities Index Company (CSI) as data. This study focused on the following three research questions. The first is to determine whether there are any differences in ESG activities between companies with high ESG scores (TOP-25) and companies with low ESG scores (BOT-25), and the second is to determine whether there are any changes in ESG activities over a 10-year period (2010-2019), focusing only on companies with high ESG scores. The results showed that there was a significant difference in ESG activities between high and low ESG scorers, while tracking the year-to-year change in activities of the top-25 companies did not show any difference in ESG activities. In the third study, social network analysis was conducted on the keywords of E/S/G. Through the co-concurrence matrix technique, we visualized the ESG activities of companies in a four-quadrant graph and set the direction for ESG activities based on this.