Browse > Article

Identification of Profane Words in Cyberbullying Incidents within Social Networks  

Ali, Wan Noor Hamiza Wan (Center for Cyber Security, Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia)
Mohd, Masnizah (Center for Cyber Security, Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia)
Fauzi, Fariza (Center for Cyber Security, Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia)
Publication Information
Journal of Information Science Theory and Practice / v.9, no.1, 2021 , pp. 24-34 More about this Journal
The popularity of social networking sites (SNS) has facilitated communication between users. The usage of SNS helps users in their daily life in various ways such as sharing of opinions, keeping in touch with old friends, making new friends, and getting information. However, some users misuse SNS to belittle or hurt others using profanities, which is typical in cyberbullying incidents. Thus, in this study, we aim to identify profane words from the ASKfm corpus to analyze the profane word distribution across four different roles involved in cyberbullying based on lexicon dictionary. These four roles are: harasser, victim, bystander that assists the bully, and bystander that defends the victim. Evaluation in this study focused on occurrences of the profane word for each role from the corpus. The top 10 common words used in the corpus are also identified and represented in a graph. Results from the analysis show that these four roles used profane words in their conversation with different weightage and distribution, even though the profane words used are mostly similar. The harasser is the first ranked that used profane words in the conversation compared to other roles. The results can be further explored and considered as a potential feature in a cyberbullying detection model using a machine learning approach. Results in this work will contribute to formulate the suitable representation. It is also useful in modeling a cyberbullying detection model based on the identification of profane word distribution across different cyberbullying roles in social networks for future works.
cyberbullying; profane words; cybercrime; harassment; social network; machine learning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Salmivalli, C. (2010). Bullying and the peer group: A review. Aggression and Violent Behavior, 15(2), 112-120.   DOI
2 Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G., & Vakali, A. (2017, June 25-28). Mean birds: Detecting aggression and bullying on Twitter. In P. Fox, D. McGuinness, & L. Poirer (Eds.), WebSci '17: Proceedings of the 2017 ACM Web Science Conference (pp. 13-22). ACM.   DOI
3 Tarmizi, N., Saee, S., & Ibrahim, D. H. A. (2020). Detecting the usage of vulgar words in cyberbully activities from Twitter. International Journal on Advanced Science, Engineering and Information Technology, 10(3), 1117-1122.   DOI
4 Teh, P. L., Cheng, C., & Chee, W. (2018, March 23-25). Identifying and categorising profane words in hate speech. In A. Gokhale & S. Zhang (Eds.), Proceedings of 2018 the 2nd International Conference on Compute and Data Analysis (pp. 65-69). ACM.   DOI
5 Van Hee, C., Jacobs, G., Emmery, C., Desmet, B., Lefever, E., Verhoeven, B., De Pauw, G., Daelemans, W., & Hoste, V. (2018). Automatic detection of cyberbullying in social media text. PLoS One, 13(10), e0203794.   DOI
6 Al-garadi, M. A., Varathan, K. D., & Ravana, S. D. (2016). Cybercrime detection in online communications: The experimental case of cyberbullying detection in the Twitter network. Computers in Human Behavior, 63, 433-443.   DOI
7 Xu, J.-M., Jun, K.-S., Zhu, X., & Bellmore, A. (2012, June 3-8). Learning from bullying traces in social media. In J. Chu-Carroll (Ed.), NAACL HLT '12: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 656-666). ACL.
8 Zainudin, N. M., Zainal, K. H., Hasbullah, N. A., Wahab, N. A., & Ramli, S. (2016, May 16-17). A review on cyberbullying in Malaysia from digital forensic perspective. ICICTM '16: Proceedings of 1st International Conference on Information and Communication Technology (pp. 246-250). IEEE.   DOI
9 Zois, D., Kapodistria, A., Yao, M., & Chelmis, C. (2018, April 15-20). Optimal online cyberbullying detection. In M. Hayes & H. Ko (Eds.), Proceedings of 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 2017-2021). IEEE.   DOI
10 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikitlearn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.   DOI
11 Ashktorab, Z., Golbeck, J., Haber, E., & Vitak, J. (2017, June 25-28). Beyond cyberbullying: Self-disclosure, harm and social support on ASKfm. In P. Fox, D. McGuinness, & L. Poirer (Eds.), WebSci '17: Proceedings of the 2017 ACM Web Science Conference (pp. 3-12). ACM.   DOI
12 Kontostathis, A., Reynolds, K., Garron, A., & Edwards, L. (2013, May 2-4). Detecting cyberbullying: Query terms and techniques. In H. Davis, H. Halpin, & A. Pentland (Eds.), WebSci '13: Proceedings of the 5th Annual ACM Web Science Conference (pp. 195-204). ACM.   DOI
13 Bastiaensens, S., Vandebosch, H., Poels, K., Van Cleemput, K., DeSmet, A., & De Bourdeaudhuij, I. (2014). Cyberbullying on social network sites. An experimental study into bystanders' behavioural intentions to help the victim or reinforce the bully. Computers in Human Behavior, 31, 259-271.   DOI
14 Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230.   DOI
15 Computational Linguistics Research Group. (2019). Bratreader.
16 Dinakar, K., Reichart, R., & Lieberman, H. (2011, July 17-21). Modeling the detection of textual cyberbullying. In N. Nicolov & J. G. Shanahan (Eds.), Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (pp. 11-17). AAAI Press.
17 Giumetti, G. W., McKibben, E. S., Hatfield, A. L., Schroeder, A. N., & Kowalski, R. M. (2012). Cyber incivility @ work: The new age of interpersonal deviance. Cyberpsychology, Behavior and Social Networking, 15(3), 148-154.   DOI
18 Muneer, A., & Fati, S. M. (2020). A comparative analysis of machine learning techniques for cyberbullying detection on Twitter. Future Internet, 12(11), 187.   DOI
19 Laboreiro, G., & Oliveira, E. (2014, October 6-8). What we can learn from looking at profanity. In A. Baptista, N. Mamede, S. Candeias, I. Paraboni, T. A. S. Pardo, & M. G. V. Nunes (Eds.), Computational Processing of the Portuguese Language: 11th International Conference, PROPOR 2014. Proceedings (pp. 108-113). Springer.   DOI
20 Moxey, N., & Bussey, K. (2020). Styles of bystander intervention in cyberbullying incidents. International Journal of Bullying Prevention, 2(1), 6-15.   DOI
21 Nandhini, B. S., & Sheeba, J. I. (2015, March 6-7). Cyberbullying detection and classification using information retrieval algorithm. In S. A. Khadar (Ed.), ICARCSET '15: Proceedings of the 2015 International Conference on Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015) (pp. 1-5). ACM.   DOI
22 Reynolds, K., Kontostathis, A., & Edwards, L. (2011, December 18-21). Using machine learning to detect cyberbullying. In X. Chen, T. Dillon, H. Ishbuchi, J. Pei, H. Wang, & M. A. Wani (Eds.), Proceedings of the 10th International Conference on Machine Learning and Applications (ICMLA 2011) (pp. 241-244). Institute of Electrical and Electronics Engineers.   DOI
23 Stenetorp, P., Pyysalo, S., Topic, G., Ohta, T., Ananiadou, S., & Tsujii, J. (2012, April 23-27). BRAT: A web-based tool for NLP-assisted text annotation. Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics (pp. 102-107). ACL.
24 Salmivalli, C. (1999). Participant role approach to school bullying: Implications for interventions. Journal of Adolescence, 22(4), 453-459.   DOI
25 Hinduja, S., & Patchin, J. W. (2018). Cyberbullying: Identification, prevention, and response.
26 Wang, W., Chen, L., Thirunarayan, K., & Sheth, A. P. (2014, February 15-19). Cursing in English on twitter. In S. Fussell & W.e Lutters (Eds.), CSCW'14: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 415-425). ACM.   DOI
27 Salawu, S., He, Y., & Lumsden, J. (2017). Approaches to automated detection of cyberbullying: A survey. IEEE Transactions on Affective Computing, 11(1), 3-24.   DOI
28 Salmivalli, C., Lagerspetz, K., Bjorkqvist, K., Osterman, K., & Kaukiainen, A. (1996). Bullying as a group process: Participant roles and their relations to social status within the group. Aggressive Behavior, 22(1), 1-15.;2-T   DOI
29 Sekharan, S. C., Vadivu, G., & Rao, M. V. (2018). A comprehensive study on sarcasm detection techniques in sentiment analysis. International Journal of Pure and Applied Math ematics, 118(22), 433-442.
30 Sheeba, J. I., Devaneyan, S. P., & Cadiravane, R. (2019). Identification and classification of cyberbully incidents using bystander intervention model. International Journal of Recent Technology and Engineering (IJRTE), 8(2S4), 1-6.   DOI
31 Sutton, B. B. (2011). Cyberbullying: An interview with Parry Aftab.
32 Talpur, B. A., & O'Sullivan, D. (2020). Cyberbullying severity detection: A machine learning approach. PLoS One, 15(10), e0240924.   DOI