오래 전부터 연료의 가격은 상승하고 있다. 제조업체는 보증을 통해 실용적인 대안을 찾고자 전기와 강력한 바이오 연료를 이용하여 차량의 성장가능을 연구하고 있다. 이제, 이러한 녹색 환경(emission) 관련된 보증은 보증기간이 확장되며, 이러한 보증을 "수퍼 보증" 이라 불린다. 본 논문의 주요 결과는 라돈 변환의 역행렬을 보증공간의 수치를 줄이기 위해 사용되며, 응용 프로그램 및 RBF 네트워크를 사용하여 대략적인 이변량의 보증 기능에 새로운 방법을 제시한다. 이 방법은 다음과 같은 단계로 구성되어 있다. 첫째, 라돈 변환을 이용하여, 이변량 보증 함수의 1차원 함수를 줄일 수 있다. 둘째, 1 차원 함수의 각 신경 서브 네트워크와 신경 네트워크 기법을 사용하여 근사할 수 있다. 셋째, 이러한 신경 sub-networks 형태로 최종 근사 신경망 함께 결합 된다. 넷째, 라 돈 변환의 역함수 값을 사용 하여 최종 근사 신경 네트워크에 우리가 주어진 함수 근사화를 얻을 수 있다. 또한, 우리는 자동차 회사의 일부 그린 보증 데이터를 가지고 위의 방법을 적용한다.
This paper deals with computer analysis technique of the network having 3-terminal elements whose input and output characteristics are defined by nonuniform spacing function group on the volt-ampere space. Developing the algorithms to obtain the solutions of the network mentioned above by computer, we propose optimization technique, which can solve the normal form equations of the network defined in this paper and which involves mode analysis technique to be able to analyze the case that the function group has negative resistance characteristics.
In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.
The robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The neural network structure presents the bound function and does not need the concave property of the bound function, The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulators.
웹 페이지를 구성하는 리소소의 개수와 크기가 점점 증가하고 있으며, 이는 상대적으로 지연이 큰 모바일 네트워크에서 웹 서비스의 급격한 품질 저하로 이어지고 있다. 게다가 현재의 네트워크 구조는 폐쇄적인 구조를 가지고 있기 때문에 웹 서비스의 품질을 향상시키는 프로토콜을 개발할지라도 네트워크 기능으로 제공하기 어렵다는 문제가 있다. 본 논문에서는 모바일 네트워크에서 웹 성능을 향상시키기 위한 2가지 방안으로 Check Coded DOM 방안과 Functional JavaScript 전송 방안을 제안하고, NFV(Network Function Virtualization)를 활용하여 제안 방안이 네트워크 기능으로 제공될 수 있는 방안 모색 해본다. SMPL 라이브러리를 이용한 네트워크 시뮬레이션을 통해서 제안 방안의 성능을 평가하고 분석했으며, 제안 방안이 기존 HTTP 프로토콜보다 페이지 로딩 시간, 네트워크에 발생하는 메시지의 개수, 네트워크에 발생하는 트래픽 측면에서 향상된 성능을 제공함을 확인 할 수 있었다.
최근 광네트워킹 기술의 급격한 발전, SDN (Software-Defined Network) 및 NFV (Network Function Virtualization)로 대두되는 네트워크의 소프트웨어화, 그리고 단순한 고성능연결서비스를 포함한 연구협업을 가능하게 하는 플랫폼으로써의 연구망 등 인터넷 서비스을 포함한 연구망에서는 급격한 변화가 진행되고 있다. 이에 슈퍼컴과 함께 국가과학기술경쟁력을 대표하는 국가연구망의 향후 발전방향을 선진 국가연구망의 비교분석 및 사회가 요구하는 연구망의 역할 변화에 맞추어 조망해본다. 또한 국가연구망 백본의 40Gbps 및 100Gbps급 초광대역 네트워크화, 대용량의 데이터를 고속으로 전송하기 위한 Science DMZ 기반의 망분리, 마지막으로 BRO 기반 프로그래머블 가능한 캠퍼스 네트워크 Lastmile 보안 환경 구축 방안을 제시한다.
Ying Hu;Liang Zhu;Jianwei Zhang;Zengyu Cai;Jihui Han
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권3호
/
pp.896-915
/
2023
The network function virtualization (NFV) uses virtualization technology to separate software from hardware. One of the most important challenges of NFV is the resource management of virtual network functions (VNFs). According to the dynamic nature of NFV, the resource allocation of VNFs must be changed to adapt to the variations of incoming network traffic. However, the significant delay may be happened because of the reallocation of resources. In order to balance the performance between delay and quality of service, this paper firstly made a compromise between VNF migration and energy consumption. Then, the long short-term memory (LSTM) was utilized to forecast network traffic. Also, the asymmetric loss function for LSTM (LO-LSTM) was proposed to increase the predicted value to a certain extent. Finally, an experiment was conducted to evaluate the performance of LO-LSTM. The results demonstrated that the proposed LO-LSTM can not only reduce migration times, but also make the energy consumption increment within an acceptable range.
네트워크 가상화 (Network virtualization)는 물리 네트워크상에서 각 사용자 별로 독립된 가상의 네트워크 환경을 생성하는 기술을 지칭한다. 네트워크 가상화 기술은 물리 네트워크 자원을 공유하여 사용자 별로 네트워크를 구축하는 데 필요한 비용을 절감할 수 있으며, 네트워크 관리자가 요구사항에 따라 동적으로 네트워크를 관리할 수 있도록 돕는다. 하지만 동적으로 네트워크 관리를 수행할 수 있다는 장점에도 불구하고, 관리자가 여전히 직접 판단을 내리고 관리 기능을 실행하는 과정은 동일하다. 네트워크 관리 기능 실행 전까지 관리자에 의해 네트워크 상황을 파악하고 결정을 내리는 과정에는 많은 시간이 소요될 수 있기 때문에 네트워크 가상화로 얻을 수 있는 동적 네트워크 관리라는 장점을 최대화 하지 못하고 있다. 본 논문에서는 기계학습 (Machine Learning) 기술을 도입하여 사람의 도움 없이 네트워크가 스스로 학습하여 동적으로 네트워크 관리를 수행하는 방법을 제안한다. 제안하는 방법은 가상 네트워크 관리에서 핵심적이고 필수적인 문제인 자원관리 최적화 문제를 서비스 펑션 체인(Service Function Chaining) 문제로 정의하고, VNF의 자원 수요를 예측하여 적절한 자원을 동적으로 할당해 서비스 중단이 일어나는 것을 방지하면서 네트워크 운용비용을 절감하는 것을 목표로 한다.
본 논문은 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)과 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 소속 함수로 구성이 되었으며, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 이 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.
본 논문에서는 방사 기저함수 네트워크의 파라미터를 전 영역에서 최적화하는 학습 알고리즘을 제안한다. 기존의 학습 알고리즘들은 지역 최적화만을 수행하기 때문에 성능의 한계가 있고 최종 결과가 초기 네트워크 파라미터 값에 크게 의존하는 단점이 있다. 본 논문에서 제안하는 하이브리드 모의 담금질 기법은 모의 담금질 기법의 전 영역 탐색 능력과 경사 기반 학습 알고리즘의 지역 최적화 능력을 조합하여 전 파라미터 영역에서 해를 찾을 수 있도록 한다. 제안하는 기법을 함수 근사화 문제에 적용하여 기존의 학습 알고리즘에 비해 더 좋은 학습 및 일반화 성능을 보이는 네트워크 파라미터를 찾을 수 있으며, 초기 파라미터 값의 영향을 크게 줄일 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.