• Title/Summary/Keyword: Network Function

Search Result 4,595, Processing Time 0.04 seconds

The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot (이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계)

  • Han, S.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

Development of a Neural network for Optimization and Its Application Traveling Salesman Problem

  • Sun, Hong-Dae;Jae, Ahn-Byoung;Jee, Chung-Won;Suck, Cho-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.5-169
    • /
    • 2001
  • This study proposes a neural network for solving optimization problems such as the TSP (Travelling Salesman Problem), scheduling, and line balancing. The Hopfield network has been used for solving such problems, but it frequently gives abnormal solutions or non-optimal ones. Moreover, the Hopfield network takes much time especially in solving large size problems. To overcome such disadvantages, this study adopts nodes whose outputs changes with a fixed value at every evolution. The proposed network is applied to solving a TSP, finding the shortest path for visiting all the cities, each of which is visted only once. Here, the travelling path is reflected to the energy function of the network. The proposed network evolves to globally minimize the energy function, and a ...

  • PDF

The Development of IDMLP Neural Network for the Chip Implementation and it's Application to Speech Recognition (Chip 구현을 위한 IDMLP 신경 회로망의 개발과 음성인식에 대한 응용)

  • 김신진;박정운;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.394-403
    • /
    • 1991
  • This paper described the development of input driven multilayer perceptron(IDMLP) neural network and it's application to the Korean spoken digit recognition. The IDMPLP neural network used here and the learning algorithm for this network was proposed newly. In this model, weight value is integer and transfer function in the neuron is hard limit function. According to the result of the network learning for the some kinds of input data, the number of network layers is one or more by the difficulties of classifying the inputs. We tested the recognition of binaried data for the spoken digit 0 to 9 by means of the proposed network. The experimental results are 100% and 96% for the learning data and test data, respectively.

  • PDF

Bounds for Network Reliability

  • Jeong, Mi-Ok;Lim, Kyung-Eun;Lee, Eui-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • A network consisting of a set of N nodes and a set of links is considered. The nodes are assumed to be perfect and the states of links to be binary and associated to each other. After defining a network structure function, which represents the state of network as a function of the states of links, we obtain some lower and upper bounds on the network reliability by adopting minmax principle and minimal path and cut set arguments. These bounds are given as functions of the reliabilities of links. The bridge network is considered as an example.

  • PDF

The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function (시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성)

  • Seok, Jin-Uk;Jo, Seong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

A study of the transfer characteristics of pressure waves using two-port network analysis in exhaust system of engine (양단자 회로망 분석을 이용한 기관배기계의 압력파 전달특성에 관한 연구)

  • 이준서;유병구;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

A Design of Reconfigurable Neural Network Processor (재구성 가능한 신경망 프로세서의 설계)

  • 장영진;이현수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.368-371
    • /
    • 1999
  • In this paper, we propose a neural network processor architecture with on-chip learning and with reconfigurability according to the data dependencies of the algorithm applied. For the neural network model applied, the proposed architecture can be configured into either SIMD or SRA(Systolic Ring Array) without my changing of on-chip configuration so as to obtain a high throughput. However, changing of system configuration can be controlled by user program. To process activation function, which needs amount of cycles to get its value, we design it by using PWL(Piece-Wise Linear) function approximation method. This unit has only single latency and the processing ability of non-linear function such as sigmoid gaussian function etc. And we verified the processing mechanism with EBP(Error Back-Propagation) model.

  • PDF

Development of Comfort Feeling Structure in Indoor Environments Using Hybrid Neuralnetworks (하이브리드 신경망을 이용한 실내(室內) 쾌적감성(快適感性)모형 개발)

  • Jeon, Yong-Ung;Jo, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.29-46
    • /
    • 2001
  • This study is about the modeling of comfort feeling structure in indoor environments. To represent the degree of practical comfort feeling level in an environment, we measured elements of human sense and resultant elements of comfort feeling such as coziness, refreshment, and freshness with physical values(temperature, illumination, noise. etc.). The relationships of elements of human sense and elements of comfort feeling were formulated as a fuzzy model. And a hybrid-neural network with three layers were designed where obtained from fuzzy membership function values of the elements of human sense were used as inputs, and given as fuzzy membership function values of resultant elements of comfort feeling were used as outputs. Both kinds of fuzzy membership function values were obtained from physical values. The network was trained by measured data set. The proposed hybrid-neural network were tested and proposed a more realistic model of comfort feeling structure in indoor environments.

  • PDF

A Study on Modeling of FMS using Closed Queueing Network (폐쇄형 대기행렬 네트워크에 의한 FMS 모델링)

  • Jeong, Seok-Chan;Cho, Kyu-Kab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.153-165
    • /
    • 1995
  • Many closed queueing network models have been used as an effective tool to make a preliminary design of FMS. Although a loading/unloading function is an important factor to effect the utilization and throughput of FMS as well as a transfer function and a processing function, the Solberg's model did not clarify the loading/unloading function. In this paper, we propose a closed queueing network model for analyzing a flexible manufacturing system that consists of a load/unload station, a material handling system and a group of workstations for processing jobs, and define the expected utilization and the expected throughput of the FMS. As applications of the proposed model, the cases of a material handling system consisting of a conveyor and the FMS including an inspection station are also formulated.

  • PDF

A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator (퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구)

  • 김동희;이수흠;신위재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.79-85
    • /
    • 2001
  • We obtain a solution of inverse kinematic of 3 axis manipulator by using a self-organizing neral network(SONN) with a fuzzy compensator. The self-organizing neural network using the gaussian potential function as the activation function has one hidden layer in the first learning time. The network obtains the optimal number of node by increasing the number of hidden layer node through the learning, and the fuzzy compensator has the optimal loaming rate of neutral network. In this results, we can confirmed that the learning rate is improved and the rapid convergence to the steady-state.

  • PDF