• Title/Summary/Keyword: Network Feature Selection

Search Result 238, Processing Time 0.032 seconds

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.

Library Services in Information Society (정보사회의 도서관봉사)

  • Chun Myung-Sook
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.27
    • /
    • pp.161-181
    • /
    • 1994
  • As information technologies are applied to the libraries in information society, the library services have been changing its feature. Therefore, the purpose of this paper is to explore and to establish a paradigm of the library services in information society. It is hypothesized that the application of information technologies leads to the change of the library services in information society. To prove the hypothesis, the data were collected from various research results carried out in the developed countries and by observing various libraries where the information technologies are extensively applied. The findings are as follows: 1. As information technologies are applied to the library, many new library services emerge for the society. 2. As the electronic data replace the paper data, the collection of a library becomes the collection of the libraries in the world. Therefore, the accessibility to the information network is more important than to own information in the library. Librarians select various electronic data according to the library policy which distinguishes their own library collection from others. The policy also solves the various problems related to weeding and preserving library collection. And the use of CD-ROM selection tools enable library users to select their own data. Now, the censorship becomes the concems of the library users, not the library. 3. The catalogs are reorganized for the electronic data for the international use. The most important information in the catalog is the location of the data and the multi access to the data are necessary. 4. As the information technologies are applied in book selection, cataloguing, information retreival and circulation, the library users are enable to service themselves in the library. And most of the routine works related to the information service are taken over by the library staffs. Professional librarians engage in user education, information marketing and fund raising. 5. Public libraries in information society serves those who have no access to the information. They help the illiterates. patients in the hospital, prisoners, and homeless in the city. Therefore, the information technologies enhance the role of librarians in professional work in the library as well as in the information society.

  • PDF

An Analysis System of Prepositional Phrases in English-to-Korean Machine Translation (영한 기계번역에서 전치사구를 해석하는 시스템)

  • Gang, Won-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1792-1802
    • /
    • 1996
  • The analysis of prepositional phrases in English-to Korean machine translation has problem on the PP-attachment resolution, semantic analysis, and acquisition of information. This paper presents an analysis system for prepositional phrases, which solves the problem. The analysis system consists of the PP-attachment resolution hybrid system, semantic analysis system, and semantic feature generator that automatically generates input information. It provides objectiveness in analyzing prepositional phrases with the automatic generation of semantic features. The semantic analysis system enables to generate natural Korean expressions through selection semantic roles of prepositional phrases. The PP-attachment resolution hybrid system has the merit of the rule-based and neural network-based method.

  • PDF

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

Gesture-Based Emotion Recognition by 3D-CNN and LSTM with Keyframes Selection

  • Ly, Son Thai;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, emotion recognition has been an interesting and challenging topic. Compared to facial expressions and speech modality, gesture-based emotion recognition has not received much attention with only a few efforts using traditional hand-crafted methods. These approaches require major computational costs and do not offer many opportunities for improvement as most of the science community is conducting their research based on the deep learning technique. In this paper, we propose an end-to-end deep learning approach for classifying emotions based on bodily gestures. In particular, the informative keyframes are first extracted from raw videos as input for the 3D-CNN deep network. The 3D-CNN exploits the short-term spatiotemporal information of gesture features from selected keyframes, and the convolutional LSTM networks learn the long-term feature from the features results of 3D-CNN. The experimental results on the FABO dataset exceed most of the traditional methods results and achieve state-of-the-art results for the deep learning-based technique for gesture-based emotion recognition.

Efficient Retrieval of Short Opinion Documents Using Learning to Rank (기계학습을 이용한 단문 오피니언 문서의 효율적 검색 기법)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.117-126
    • /
    • 2013
  • Recently, as Social Network Services(SNS), such as Twitter, Facebook, are becoming more popular, much research has been doing on opinion mining. However, current related researches are mostly focused on sentiment classification or feature selection, but there were few studies about opinion document retrieval. In this paper, we propose a new retrieval method of short opinion documents. Proposed method utilizes previous sentiment classification methodology, and applies several features of documents for evaluating the quality of the opinion documents. For generating the retrieval model, we adopt Learning-to-rank technique and integrate sentiment classification model to Learning-to-rank. Experimental results show that proposed method can be applied successfully in opinion search.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

A Comparative Study on Feature Selection and Classification Methods Using Closed Frequent Patterns Mining (닫힌 빈발 패턴을 기반으로 한 특징 선택과 분류방법 비교)

  • Zhang, Lei;Jin, Cheng Hao;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.148-151
    • /
    • 2010
  • 분류 기법은 데이터 마이닝 기술 중 가장 잘 알려진 방법으로서, Decision tree, SVM(Support Vector Machine), ANN(Artificial Neural Network) 등 기법을 포함한다. 분류 기법은 이미 알려진 상호 배반적인 몇 개 그룹에 속하는 다변량 관측치로부터 각각의 그룹이 어떤 특징을 가지고 있는지 분류 모델을 만들고, 소속 그룹이 알려지지 않은 새로운 관측치가 어떤 그룹에 분류될 것인가를 결정하는 분석 방법이다. 분류기법을 수행할 때에 기본적으로 특징 공간이 잘 표현되어 있다고 가정한다. 그러나 실제 응용에서는 단일 특징으로 구성된 특징공간이 분명하지 않기 때문에 분류를 잘 수행하지 못하는 문제점이 있다. 본 논문에서는 이 문제에 대한 해결방안으로써 많은 정보를 포함하면서 빈발패턴에 대한 정보의 순실이 없는 닫힌 빈발패턴 기반 분류에 대한 연구를 진행하였다. 본 실험에서는 ${\chi}^2$(Chi-square)과 정보이득(Information Gain) 속성 선택 척도를 사용하여 의미있는 특징 선택을 수행하였다. 그 결과, 이 연구에서 제시한 척도를 사용하여 특징 선택을 수행한 경우, C4.5, SVM 과 같은 분류기법보다 더 향상된 분류 성능을 보였다.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Classification of Axis-symmetric Flaws with Non-Symmetric Cross-Sections using Simulated Eddy Current Testing Signals (모사 와전류 탐상신호를 이용한 비대칭 단면을 갖는 축대칭 결함의 형상분류)

  • Song, S.J.;Kim, C.H.;Shin, Y.K.;Lee, H.B.;Park, Y.W.;Yim, C.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.510-517
    • /
    • 2001
  • This paper describes an initial study for the application of eddy current pattern recognition approaches to more realistic flaw characterization in steam generator tubes. For this purpose, finite-element model-based theoretical eddy current testing (ECT) signals are simulated from 5 types of OD flaws with the variation in flaw size parameters and testing frequency. In addition, three kinds of software are developed for the convenience in the application of steps in pattern recognition approaches such as feature extraction feature selection and classification by probabilistic neural networks (PNNs). The cross point of the ECT signals simulated from flaws with non-symmetric cross-sections shows the deviation from the origin of the impedance plane. New features taking advantages of this phenomenon are added to complete the feature set with a total of 18 features. Then, classification with PNNs are performed based on this feature set. The PNN classifiers show high performance for the identification of symmetry in the cross-section of a flaw. However, they show very limited success in the interrogation of the sharpness of flaw tips.

  • PDF