• 제목/요약/키워드: Network Feature Selection

검색결과 238건 처리시간 0.027초

낙상 검출을 위한 NEWFM 기반의 최소의 특징입력 선택 (Selecting Minimized Input Features for Detecting Automatic Fall Detection Based on NEWFM)

  • 신동근;이상홍;임준식
    • 인터넷정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.17-25
    • /
    • 2009
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)기반의 특징추출기법을 사용하여 낙상을 검출하는 방안을 제안하고 있다. 비중복면적 분산 측정법에 의해 중요도가 가장 낮은 특징입력을 하나씩 제거하면서 최소의 특징입력을 선택하였다. 특징입력으로써 가속도 센서를 통해 입력된 가속도 변화랑을 웨이블릿 변환한 33개의 계수들 중 비중복면적 분산측정법에 의해서 추출된 19개의 계수가 사용되었다. 제안된 방법으로 민감도가 95%, 특이도가 97.25%, 정확도가 96.125%를 나타내었다.

  • PDF

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • 제24권4호
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

음성신호를 이용한 감성인식에서의 패턴인식 방법 (The Pattern Recognition Methods for Emotion Recognition with Speech Signal)

  • 박창현;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.284-288
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.

음성신호를 이용한 감성인식에서의 패턴인식 방법 (The Pattern Recognition Methods for Emotion Recognition with Speech Signal)

  • 박창현;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.347-350
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.

  • PDF

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

Support Vector Regression에 기반한 전력 수요 예측 (Electricity Demand Forecasting based on Support Vector Regression)

  • 이형로;신현정
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

2.4Ghz ISM(Industrial Scientific Medical) 밴드에서 간섭을 회피하기 위한 무선 센서 노드의 채널 선택 방법 (Channel Selection Method of Wireless Sensor Network Nodes for avoiding Interference in 2.4Ghz ISM(Industrial, Scientific, Medical) Band)

  • 김수민;금동현;김경훈;오일;최승원
    • 디지털산업정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.109-116
    • /
    • 2014
  • In recent, ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart phone, notebook computer, printer and portable multimedia devices. Accordingly, studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi device using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band causes serious network performance deterioration of wireless sensor networks. This paper examined a method of identifying channel status to avoid interference among wireless communication devices using IEEE 802.11b (Wi-Fi) and other ISM bands during communication among IEEE 802.15.4 based wireless sensor network nodes in ISM band. To identify channels occupied by Wi-Fi traffic, various studies are being conducted that use the RSSI (Received Signal Strength Indicator) value of interference signal obtained through ED (Energy Detection) feature that is one of IEEE 802.15.4 transmitter characteristics. This paper examines an algorithm that identifies the possibility of using more accurate channel by mixing utilization of interference signal and RSSI mean value of interference signal by wireless sensor network nodes. In addition, it verifies such algorithm by using OPNET Network verification simulator.

Enhancing Recommender Systems by Fusing Diverse Information Sources through Data Transformation and Feature Selection

  • Thi-Linh Ho;Anh-Cuong Le;Dinh-Hong Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1413-1432
    • /
    • 2023
  • Recommender systems aim to recommend items to users by taking into account their probable interests. This study focuses on creating a model that utilizes multiple sources of information about users and items by employing a multimodality approach. The study addresses the task of how to gather information from different sources (modalities) and transform them into a uniform format, resulting in a multi-modal feature description for users and items. This work also aims to transform and represent the features extracted from different modalities so that the information is in a compatible format for integration and contains important, useful information for the prediction model. To achieve this goal, we propose a novel multi-modal recommendation model, which involves extracting latent features of users and items from a utility matrix using matrix factorization techniques. Various transformation techniques are utilized to extract features from other sources of information such as user reviews, item descriptions, and item categories. We also proposed the use of Principal Component Analysis (PCA) and Feature Selection techniques to reduce the data dimension and extract important features as well as remove noisy features to increase the accuracy of the model. We conducted several different experimental models based on different subsets of modalities on the MovieLens and Amazon sub-category datasets. According to the experimental results, the proposed model significantly enhances the accuracy of recommendations when compared to SVD, which is acknowledged as one of the most effective models for recommender systems. Specifically, the proposed model reduces the RMSE by a range of 4.8% to 21.43% and increases the Precision by a range of 2.07% to 26.49% for the Amazon datasets. Similarly, for the MovieLens dataset, the proposed model reduces the RMSE by 45.61% and increases the Precision by 14.06%. Additionally, the experimental results on both datasets demonstrate that combining information from multiple modalities in the proposed model leads to superior outcomes compared to relying on a single type of information.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • 제10권2호
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징 (New Temporal Features for Cardiac Disorder Classification by Heart Sound)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제29권2호
    • /
    • pp.133-140
    • /
    • 2010
  • 연속 심음신호로부터 추출한 새로운 시간영역에서의 특징들을 추가하여 심장질환 분류의 성능을 개선한다. 기존에 사용되고 있는 켑스트럼 영역 특징인 멜주파수 켑스트럼 계수 (MFCC)에 심음 포락선, 심잡음 확률벡터, 심잡음 진폭값 변동으로 구성된 새로운 3종류의 시간영역 특징을 추가한다. 심장 질환 분류 및 검출 실험에서, 시간영역 특징의 분류 정확도에 대한 기여도를 평가하고 순차적 특징선택 방식을 이용하여 시간영역 특징을 선택한다. 선택된 특징들은 다층 퍼셉트론(MLP), support rector machine (SVM), extreme learning machine (ELM)와 같은 신경회로망 패턴 분류기에 대하여 의미있고 일관되게 분류 정확도를 개선함을 보여준다.