• 제목/요약/키워드: Network Enhancement

검색결과 732건 처리시간 0.034초

Credit Enhancement and its Risk Factors for IPP Projects in Asia: An Analysis by Network

  • Chowdhury, Abu Naser;Chen, Po-Han
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.122-126
    • /
    • 2015
  • Credit enhancement is absolutely essential for financing Independent Power Producer (IPP) projects in Asia particularly for countries whose sovereign credit rating is on non-investment grade and foreign investment is difficult to achieve. Due to nexus of agreements among varies parties in IPP project, it is hard to clearly visualize the roles of these agreements. Examples are: What credit enhancement factors are most influential to minimize the associated risks of IPP projects? Why are they powerful? What are their roles? Who are less powerful and what are the obstacles that causes them less powerful? A research is conducted to identify the credit enhancement factors for IPP projects in Asia. IPP professionals validated 27 out of 28 identified credit enhancement factors, and five factor groupings were made through factor analysis. Afterwards, network theory is applied to find the unanswered questions, which by graphical and mathematical representations show that the host government's credit enhancement, MDBs, ECAs and other parties' credit enhancement are prominent and of great importance to handle the associated risks of IPP projects in Asia

  • PDF

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

대역통과 정합회로를 이용한 수중음향변환기의 대역폭 확장 (Bandwidth Enhancement of Underwater Acoustic Transducer Using a Bandpass Matching Network)

  • 이대재
    • 한국수산과학회지
    • /
    • 제52권6호
    • /
    • pp.702-708
    • /
    • 2019
  • The range resolution of echo sounders can be improved by enhancing the transducer bandwidth. We designed a bandpass matching network for expanding the bandwidth of a transducer by scaling in both impedance and frequency after transforming a lowpass network into a bandpass configuration for a third-order Bessel filter. We measured the effect of the Bessel matching network for a 50 kHz sandwich type transducer on the transmitting voltage response (TVR), receiving sensitivity (SRT) and figure of merit (FOM), using a chirp echo sounder system. Both the simulation and experimental results indicated that the transducer with a bandpass matching network was capable of producing a symmetrical acoustic output over a wider bandwidth (8.25 kHz) than was the transducer without a matching network (3.75 kHz). By implementing the Bessel matching network, we achieved a 120% bandwidth enhancement.

Attention-based for Multiscale Fusion Underwater Image Enhancement

  • Huang, Zhixiong;Li, Jinjiang;Hua, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.544-564
    • /
    • 2022
  • Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.

QRS 파의 증대를 위한 신경망 ALE 설계 (Design of neural network based ALE for QRS enhancement)

  • 원상철;박종철;최한고
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.217-220
    • /
    • 2000
  • This paper describes the application of a neural network based adaptive line enhancer (ALE) for enhancement of the weak QRS complex corrupted with background noise. Modified fully-connected recurrent neural network is used as a nonlinear adaptive filter in the ALE. The connecting weights between network nodes as well as the parameters of the node activation function are updated at each iteration using the gradient descent algorithm. The real ECG signal buried with moderate and severe background noise is applied to the ALE. Simulation results show that the neural network based ALE performs well the enhancement of the QRS complex from noisy ECG signals.

  • PDF

딥 뉴럴 네트워크 기반의 음성 향상을 위한 데이터 증강 (Data Augmentation for DNN-based Speech Enhancement)

  • 이승관;이상민
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.749-758
    • /
    • 2019
  • This paper proposes a data augmentation algorithm to improve the performance of DNN(Deep Neural Network) based speech enhancement. Many deep learning models are exploring algorithms to maximize the performance in limited amount of data. The most commonly used algorithm is the data augmentation which is the technique artificially increases the amount of data. For the effective data augmentation algorithm, we used a formant enhancement method that assign the different weights to the formant frequencies. The DNN model which is trained using the proposed data augmentation algorithm was evaluated in various noise environments. The speech enhancement performance of the DNN model with the proposed data augmentation algorithm was compared with the algorithms which are the DNN model with the conventional data augmentation and without the data augmentation. As a result, the proposed data augmentation algorithm showed the higher speech enhancement performance than the other algorithms.

주파수 영역 심층 신경망 기반 음성 향상을 위한 실수 네트워크와 복소 네트워크 성능 비교 평가 (Performance comparison evaluation of real and complex networks for deep neural network-based speech enhancement in the frequency domain)

  • 황서림;박성욱;박영철
    • 한국음향학회지
    • /
    • 제41권1호
    • /
    • pp.30-37
    • /
    • 2022
  • 본 논문은 주파수 영역에서 심층 신경망 기반 음성 향상 모델 학습을 위하여 학습 대상과 네트워크 구조에 따라 두 가지 관점에서 성능을 비교 평가한다. 이때, 학습 대상으로는 스펙트럼 매핑과 Time-Frequency(T-F) 마스킹 기법을 사용하였고 네트워크 구조는 실수 네트워크와 복소 네트워크를 사용하였다. 음성 향상 모델의 성능은 데이터 셋 규모에 따라 Perceptual Evaluation of Speech Quality(PESQ)와 Short-Time Objective Intelligibility(STOI) 두 가지 객관적 평가지표를 통해 평가하였다. 실험 결과, 네트워크의 종류와 데이터 셋 종류에 따라 적정한 훈련 데이터의 크기가 다르다는 것을 확인하였다. 또한, 데이터의 크기와 학습 대상에 따라 복소 네트워크보다 실수 네트워크가 비교적 높은 성능을 보이기 때문에 총 파라미터의 수를 고려한다면 경우에 따라 실수 네트워크를 사용하는 것이 보다 현실적인 해결책일 수 있다는 것을 확인하였다.

음성 향상을 위한 NPHMM을 갖는 IMM 알고리즘 (IMM Algorithm with NPHMM for Speech Enhancement)

  • 이기용
    • 음성과학
    • /
    • 제11권4호
    • /
    • pp.53-66
    • /
    • 2004
  • The nonlinear speech enhancement method with interactive parallel-extended Kalman filter is applied to speech contaminated by additive white noise. To represent the nonlinear and nonstationary nature of speech. we assume that speech is the output of a nonlinear prediction HMM (NPHMM) combining both neural network and HMM. The NPHMM is a nonlinear autoregressive process whose time-varying parameters are controlled by a hidden Markov chain. The simulation results shows that the proposed method offers better performance gains relative to the previous results [6] with slightly increased complexity.

  • PDF

Pixel-Wise Polynomial Estimation Model for Low-Light Image Enhancement

  • Muhammad Tahir Rasheed;Daming Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2483-2504
    • /
    • 2023
  • Most existing low-light enhancement algorithms either use a large number of training parameters or lack generalization to real-world scenarios. This paper presents a novel lightweight and robust pixel-wise polynomial approximation-based deep network for low-light image enhancement. For mapping the low-light image to the enhanced image, pixel-wise higher-order polynomials are employed. A deep convolution network is used to estimate the coefficients of these higher-order polynomials. The proposed network uses multiple branches to estimate pixel values based on different receptive fields. With a smaller receptive field, the first branch enhanced local features, the second and third branches focused on medium-level features, and the last branch enhanced global features. The low-light image is downsampled by the factor of 2b-1 (b is the branch number) and fed as input to each branch. After combining the outputs of each branch, the final enhanced image is obtained. A comprehensive evaluation of our proposed network on six publicly available no-reference test datasets shows that it outperforms state-of-the-art methods on both quantitative and qualitative measures.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.