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Abstract 

Most existing low-light enhancement algorithms either use a large number of training 
parameters or lack generalization to real-world scenarios. This paper presents a novel 
lightweight and robust pixel-wise polynomial approximation-based deep network for low-light 
image enhancement. For mapping the low-light image to the enhanced image, pixel-wise 
higher-order polynomials are employed. A deep convolution network is used to estimate the 
coefficients of these higher-order polynomials. The proposed network uses multiple branches 
to estimate pixel values based on different receptive fields. With a smaller receptive field, the 
first branch enhanced local features, the second and third branches focused on medium-level 
features, and the last branch enhanced global features. The low-light image is downsampled 
by the factor of 2b-1 (b is the branch number) and fed as input to each branch. After combining 
the outputs of each branch, the final enhanced image is obtained. A comprehensive evaluation 
of our proposed network on six publicly available no-reference test datasets shows that it 
outperforms state-of-the-art methods on both quantitative and qualitative measures. 

 
Keywords: Deep learning, polynomial estimation, low-light image enhancement, multi-
branch. 
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1. Introduction 

The quality of images strongly affects computer vision tasks. Low-light conditions lead to 
poor contrast, poor visibility, and substantial noise in an image [24, 19, 55]. When such 
degraded images are used for computer vision tasks, obtaining accurate features is challenging, 
and as a consequence, computer vision tasks perform decrease [39]. Histogram equalization-
based methods [6, 33] use different approaches to balance the histogram of the intensities of 
pixels. It is possible that the balancing histogram can saturate certain regions of the image and 
introduce strange artifacts in it. Another non-linear classical method, Gamma correction [43, 
35], suppresses bright regions while increasing the brightness of dark areas. Aside from 
suppressing the bright region, it treats each pixel as a separate entity and does not consider the 
entire image structure, which reduces the quality of the image.  

To produce an improved image in RGB space from the scene radiance information, the 
camera manufacturers apply several nonlinear functions on the captured light, such as white 
balance, demosaick and color correction. Over the years, several approaches have been 
proposed to estimate the best Camera Response Function (CRF). Grossberg and Nayar [10] 
devised an Empirical Model of Response (EMoR) that relates scene radiance to image 
brightness. Later on, they collected a Database of real-world camera Response Functions 
(DoRF) and used this database to design an Empirical Model of Response (EMoR) [10]. Ng 
and Tsui [31] estimated the CRF using geometry invariants. In [29], the radiometric response 
function is designed for imaging systems. A radiometric response function can be used to 
estimate the CRF based on a rough estimate of the exposures used. A study conducted by Ying 
et al. [47] examined the relationship between two images with different exposures and devised 
a CRF based on this relationship. A designed CRF estimates the exposure ratio map for low-
light images and adjusts pixel-by-pixel exposure accordingly. The majority of classical camera 
response function estimation algorithms lack robustness.  

In the past, different functions have been used to estimate the camera response model and 
traditional optimization criteria have been employed to find the best model parameters. The 
main disadvantage of these models is their lack of robustness as a result of inaccurate model 
parameters. It is the primary objective of this paper to develop a lightweight model with 
improved generalization capabilities. To accomplish this goal, we make use of deep learning 
and higher-order polynomials to create a lightweight and better low-light enhancement 
network. In this paper, we use deep learning to fit pixel-wise polynomial approximations for 
low-light enhancement. For each pixel, the proposed module uses a Deep Curve Estimation 
(DCE) like module of a Zero-Deep Curve Estimation (Zero-DCE) [14] network to estimate 
the polynomial’s coefficients. In order to enhance local, medium, and global features, multiple 
branches are used. By combining the outputs of these multiple branches, a final image is 
produced. Using data-driven multi-branch polynomial approximation based on deep learning, 
we obtain images that look more natural, have better contrast, and are less noisy. The flowchart 
of the proposed method can be seen in Fig. 1. Experiments on no-reference enhancement test 
datasets with various image quality assessment metrics demonstrate our approach’s 
generalization ability. In summary, this paper makes the following contributions: 
 
 A pixel-wise higher-order polynomial approximation module is proposed in order to 

map low-light inputs to high-quality images. To estimate the coefficients of the 
polynomials, a deep convolution network is employed.  

 A multi-branch network is designed using the proposed higher-order polynomial 
approximation module to enhance the local, medium, and global features of low-light 
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images.  
 Comprehensive experimental results on six publicly available test datasets using four 

image quality assessment metrics demonstrate that our proposed method has better 
generalization ability as compared to traditional and advanced state-of-the-art 
methods. 

 
The remainder of the paper is organized as follows: Section 2 provides a brief overview of 
methodologies for low-light enhancement, Section 3 describes the proposed approach in detail, 
and Section 4 presents detailed information about the implementation of the proposed 
approach, training data, objective function, ablation study, qualitative, quantitative, and 
computational analysis. Finally, a conclusion and future work is presented in Section 5. 

 
 

Fig. 1. Flowchart of the proposed system. 

2. Literature Review 
In the past, Histogram Equalization (HE) based methods such as Weighted Approximated 

Histogram Equalization (WAHE) [2], Bi-Histogram Equalization (BiHE) [22] are employed 
to enhance the contrast of low-light images by balancing pixel values distribution. Balancing 
pixel values based on probability introduces annoying artifacts and may increase the noise in 
the image. Gamma correction-based methods [17, 3] apply the same non-linear function on 
each pixel value individually without considering their mutual dependencies. As a result of 
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Gamma correction, some regions of images are over-enhanced and others under-enhanced. In 
addition, there is no mechanism to reduce the noise in the output image.  

Deep learning has found application in supply chain management [57], health care 
systems [58], IoT [59], and missing data imputation [11, 54, 56]. In recent years, deep learning-
based methods [5, 18, 44, 37, 38] have outperformed classical image enhancement techniques. 
Lore et al. [25] are the first ones to propose a deep learning-based sparse auto-encoder for 
simultaneous low-light enhancement and noise reduction using synthetic dataset. Training 
networks on synthetic datasets may limit their application to real-world images. Wei et al. [42] 
combined the idea of Retinex theory and deep learning to develop Retinex-Net. Retinex-Net 
is composed of Decomp-Net for decomposition and an Enhance-Net for illumination 
adjustment. During the training, there is no ground truth of illumination and reflectance for 
Decom-Net. In GLobal illumination-Aware and Detail-preserving Network (GLADNet) [40], 
an encoder-decoder network is used to estimate global illumination. A convolution network is 
used for detail reconstruction using global estimation knowledge to produce enhanced images. 
Multi-branch fusion module is used for combining the output of multiple subnets to produce 
the final result in Multi-Branch Low-Light Enhancement Network (MBLLEN) [27]. The 
major drawback of GLADNET and MBLLEN is the use of Synthetic datasets for their training. 
Chen et al. [5] proposed an Unet-based pipeline for enhancing extremely low-light images 
using RAW image format. However, in reality, a pipeline based on RAW data cannot be used 
for sRGB images. Xu et al. [44] observed that noise detection is easier in the low-frequency 
layer and proposed a decomposition and enhancement network. A decomposition and 
enhancement network is used to recover low-frequency objects, which are used to enhance 
high-frequency details.  

Several approaches based on Generative Adversarial Networks (GANs) have also been 
found to be effective in translating low-light images into enhanced images. Jiang et al. [19] 
introduced a global-local discriminator and Unet-based generator to enhance images using 
unpaired data for training. Jung et al. [21] introduced the concept of Multi-Frame GAN 
(MFGAN) to translate bad illumination images into good illumination for stereo visual 
odometry in low-light conditions. Training a GAN is difficult because of its instability. In an 
attempt to enhance low-light images, Guo et al. [14] proposed a Zero-reference Deep Curve 
Estimation (Zero-DCE) method. Zero-DCE adjusts the dynamic range of a given image by 
estimating the higher-order curve. Based on the idea of deep image priors, Zhao et al. [52] 
proposed the generative Retinex Deep Image Prior (RetinexDIP) network for Retinex 
decomposition. Robust Retinex Decomposition Network (RRDNet) [53] is another zero-shot 
learning-based network based on Retinex decomposition. Both RetinexDIP and RRDNet 
methods minimize non-reference loss iteratively to produce enhanced images. Iteratively 
minimizing errors increases computation costs and makes them less efficient. Rasheed et al. 
[36] have presented a comprehensive experimental review of various enhancement methods 
on nine publicly available datasets to assess their generalization ability. In this experimental 
review, supervised learning-based methods outperform not only classical methods but also 
self-supervised and zero-shot learning-based approaches.  

Even though several deep learning-based methodologies have been developed to date, 
their network architectures are either computationally inefficient or have limited 
generalization capabilities. The primary objective of this study is to develop a network that is 
not only efficient but also capable of producing more natural results in a variety of situations. 
The classical methods lack the model capacity to remove noise, enhance contrast, sharpen 
details and improve the aesthetic of low-light images. Furthermore, the majority of classical 
methods try to enhance the local region and ignore the global aspect (i.e., Gamma correction) 
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while the others enhance the global and ignore the local information (i.e., HE).  Whereas Zero-
shot methods (i.e., RetinexDIP and RRDNet) iteratively enhance the image and take several 
seconds to process a single image. Based on these drawbacks and Rasheed et al. [36] 
experimental analysis of low-light enhancement, an efficient and lightweight method is 
required that enhances both local and global details, removes noise, and improves an image's 
aesthetics. Moreover, it should be more generalizable in real-world scenarios. 

3. Proposed Architecture 
 
In this section, the basic building blocks as well as the overall architecture of the proposed 
network are discussed in detail. The proposed architecture can be seen in Fig. 2. 

 
Fig. 2. Proposed pixel-wise polynomial estimation based deep convolution network architecture. The 

network is composed of four parallel branches. The first branch estimates the pixel value based on 
local regions, the second and third branches estimates based on medium regions and the last branch 

estimates based on global region. 
 

3.1 Polynomial-based Pixel Value Estimation Unit 
In this subsection, we describe the working of the polynomial-based pixel value estimation 
unit. This unit consists of two parts; 1) Deep Convolution Network (DCN), and 2) pixel-wise 
higher-order polynomial fitting. The DCN can be seen in Fig. 2. It is composed of six 
convolutional layers with skip connections among them. This deep convolution network first 
calculates the coefficient of the higher-order polynomial (i.e., 𝒜𝒜𝑘𝑘 ). Afterwards, the higher-
order polynomial uses the low-light pixel value as input for estimating the pixel value of the 
enhanced output image. The following equation can be used to describe the operation of this 
unit, 
 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦) = ∑  𝑛𝑛
𝑘𝑘=1 𝒜𝒜𝑘𝑘(𝑥𝑥, 𝑦𝑦) ∗ 𝐼𝐼𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦)𝑘𝑘 + 𝐼𝐼𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦),                                    (1) 
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where 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦)  represents the estimated output pixel-wise. 𝒜𝒜𝑘𝑘 and 𝑛𝑛 represent the matrix 
containing the coefficient and degree of the polynomial, respectively. The 𝑥𝑥 and 𝑦𝑦 denote the 
pixel coordinates. The coefficient of the polynomial is estimated using a convolution neural 
network (CNN). The architecture of the CNN used is similar to the one described in [14], 
except that each convolution layer is followed by the ReLU activation function. The CNN 
output totals nine feature maps, which are used in the above Equation (1) to calculate the 
enhanced image. The degree (i.e., n) is selected to be 3 for the polynomial equation. In order 
to learn the non-linear relationship between low-light pixel values and enhanced pixel values, 
higher-order polynomials are used to map the low-light pixels to enhanced pixels. 

3.2 Multi-branch Network Architecture 
This subsection discusses the overall structure of the multi-branch network. The proposed 
network consists of four branches. Each branch is composed of a polynomial-based pixel value 
estimation unit. The main difference between each branch is that the pixel value is learned 
based on a different receptive field. The first branch learns pixel values based on local features, 
while the second and third branches learn pixel values based on medium-level features, and 
the last branch learns pixel values based on global features. The input to the first branch is the 
low-light image, and the input to the second, third, and fourth branches is the downsampled 
version of the low-light by a factor of two, four, and eight, respectively. Learning the pixel 
values based on different receptive fields helps to enhance the local texture of the image as 
well as the global details. Each branch of the network is denoted by the following set of 
equations, 
 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒1(𝑥𝑥,𝑦𝑦) = ∑  𝑛𝑛
𝑘𝑘=1 𝒜𝒜𝑘𝑘(𝑥𝑥,𝑦𝑦) ∗ 𝐼𝐼𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦)𝑘𝑘 + 𝐼𝐼𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦),     (2) 

 
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒2(𝑥𝑥,𝑦𝑦) = ∑  𝑛𝑛

𝑘𝑘=1 𝒜𝒜𝑘𝑘(𝑥𝑥,𝑦𝑦) ∗ 𝐼𝐼𝐿𝐿𝐿𝐿2(𝑥𝑥,𝑦𝑦)𝑘𝑘 + 𝐼𝐼𝐿𝐿𝐿𝐿2(𝑥𝑥,𝑦𝑦),                         (3) 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒4(𝑥𝑥,𝑦𝑦) = ∑  𝑛𝑛
𝑘𝑘=1 𝒜𝒜𝑘𝑘(𝑥𝑥,𝑦𝑦) ∗ 𝐼𝐼𝐿𝐿𝐿𝐿4(𝑥𝑥,𝑦𝑦)𝑘𝑘 + 𝐼𝐼𝐿𝐿𝐿𝐿4(𝑥𝑥,𝑦𝑦),    (4) 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒8(𝑥𝑥,𝑦𝑦) = ∑  𝑛𝑛
𝑘𝑘=1 𝒜𝒜𝑘𝑘(𝑥𝑥,𝑦𝑦) ∗ 𝐼𝐼𝐿𝐿𝐿𝐿8(𝑥𝑥,𝑦𝑦)𝑘𝑘 + 𝐼𝐼𝐿𝐿𝐿𝐿8(𝑥𝑥,𝑦𝑦),    (5) 

 
where 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒1, 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒2, 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒4 and 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒8 are the first, second, third, and fourth branches’ outputs, 
respectively. The low-light input image is denoted by 𝐼𝐼𝐿𝐿𝐿𝐿. The 𝐼𝐼𝐿𝐿𝐿𝐿2, 𝐼𝐼𝐿𝐿𝐿𝐿4, and 𝐼𝐼𝐿𝐿𝐿𝐿8 are the 
downsampled versions of 𝐼𝐼𝐿𝐿𝐿𝐿 by a factor of two, four and eight, respectively. The final 
enhanced image is produced by fusing the estimated output of multi-branches. The 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒8 is 
upsampled by a factor of 2 and concatenated with the feature of 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒4 and a convolution filter 
is applied to them. The same process is repeated to produce the final enhanced image 𝐼𝐼𝑒𝑒𝑛𝑛. 

4. Experimental Results 

4.1 Implementation 

The proposed pixel-wise polynomial estimation-based network is implemented with the 
Tensorflow 2.4 framework in Python 3.6. To train the network, a workstation equipped with 
an NVIDIA Titan Xp GPU is used. Adam optimizer with an initial learning rate of 10−4 is 
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applied to optimize the objective function. As part of each training cycle, patches of size 
256×256×3 are fed to the network. A batch size of 16 is used for training. Training this network 
for 560 epochs takes approximately three and a half days. A flip, resize, and rotation based 
augmentation of the data is also applied during the training process to avoid overfitting of the 
model. 

4.2 Training Loss Function 
We need to enhance the aesthetics, brightness, and contrast of the image. The generated image 
and the ground truth image must be structurally similar. The structural similarity index (SSIM) 
based objective function is used for training networks. The objective function can be expressed 
as follows: 
 

ℒSSIM = 1 − SSIM (𝐼𝐼𝑒𝑒𝑛𝑛, 𝐼𝐼),                                                            (6) 
 
Where 𝐼𝐼𝑒𝑒𝑛𝑛 and 𝐼𝐼 represent the predicted and ground truth images, respectively. In general, 
SSIM values fall between 0 and 1. The value of ℒSSIM can lie between 1 and 0. The value of 
ℒSSIM closer to 1 indicates that the structure of the predicted image is far from the ground truth 
image and vice versa. 
 

4.3 Training Dataset 
For the purpose of training an enhancement network, we have collected low-light images from 
the LOw-Light (LOL), Single Image Contrast Enhancement (SICE), GLADNet, Large-Scale 
Real-World (LSRW), and Vassilios Vonikakis (VV) datasets. The LOL contains 485 images 
taken in low light, most of which are taken indoors. On the other hand, the SICE dataset 
contains approximately 589 images, the majority of which are taken outside. As a means of 
balancing indoor and outdoor images and expanding the training dataset, low-light images 
from other datasets, such as LSRW and VV, are also included. We randomly cropped 1455 
patches from the LOL dataset, 1783 patches from SICE, 3491 patches from the LSRW dataset, 
and 5000 patches from the GLADNet dataset. In total, 11829 patches are randomly cropped 
from the above-mentioned datasets, and each patch measured 256×256×3. We trained the 
network with 10646 patches and evaluated it with 1183 patches. The primary reason for 
collecting patches from different training datasets is to increase the size and diversity of the 
training dataset. Larger and more diverse datasets have a higher entropy, which enhances the 
learning ability of a neural network. In summary, the larger the dataset, the better the network 
will be able to generalize in real-life scenarios. 

4.4 Ablation Study 
The purpose of this subsection is to demonstrate the effectiveness of each component of the 
proposed method. Controlled experiments are conducted on 1183 patches with a size of 
256×256×3 and the results are shown in Table 1 and Fig. 3. The default settings use each 
convolution filter of size 3 × 3 followed by a ReLU activation function. There are four parallel 
branches in the network, and the degree of polynomial is chosen to be 3. The network is 
optimized using the SSIM loss function presented in subsection 4.2. Fig. 4b and 4a show the 
results of the evaluation of the models based on Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity (SSIM) metrics. The higher the PSNR and SSIM values, the better the image quality. 
We have changed the loss function, filter size, number of parallel branches, and activation 
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function of the proposed network one by one, and the best results for each setting have been 
presented in Table 1. The default setting produces the best results, with a PSNR of 19.463 and 
an SSIM of 0.767. When the filter size is changed from 3×3 to 6×6, the PSNR and SSIM 
values are reduced. Applying batch normalization or layer normalization after the convolution 
filter also reduces the value of these metrics. When the network is optimized using the mean 
square error (MSE) loss function instead of the SSIM loss function, there is a significant 
difference between PSNR and SSIM metrics. 
 

 
 

Fig. 3. A visual comparison of the results produced by the proposed method with different settings. 
 

Table 1. Several experiments have been conducted to evaluate the performance of the proposed 
architecture. 

Settings PSNR↑ SSIM [41]↑   
Default 19.463 0.767 

SSIM → MSE 19.03 0.72 
3 × 3 fil → 6 × 6 fil 19.352 0.759 

4 branches → 3 branches 19.098 0.761 
with layer normalization 19.344 0.758 
with batch normalization 19.334 0.756 

ReLU → tanh 19.327 0.765 
degree 3 → 5 19.355 0.766 
w/o Residual 19.311 0.733 

 

(a) (b) 
Fig. 4. The evaluation of the different models for the ablation study. (a) shows the PSNR vs the 
number of epochs and (b) shows the SSIM vs the number of epochs for different variants of the 

proposed methods on the evaluation data. 
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4.5 Quantitative Comparison 
The proposed model is quantitatively compared with other methods using six publicly 
available test datasets: Low-light Image Enhancement via Illumination Map Estimation 
(LIME), LOL (15 images paired), Multi-Exposure Image Fusion (MEF).  (17 images 
unpaired), DICM (69 images unpaired), Extremely Dark (ExDark) (150 images unpaired), and 
Synthetic Low-Light (SLL) (154 images paired). 
 

Table 2. A quantitative comparison of the proposed methodology is conducted with state-of-the-art 
methods on six non-reference low-light test datasets using BIQME [13] metric (A higher value of 

BIQME indicates a higher quality image). Red represents the best result, while blue and green 
represent the second and third best results, respectively. 

Methods LIME [15] LOL[42] MEF [28] DICM [23] ExDark [24] SLL [26] Average 
Input 0.366 0.194 0.377 0.505 0.376 0.311 0.355 

CVC [4] 0.517 0.452 0.485 0.568 0.469 0.464 0.492 
CLAHE [32] 0.458 0.249 0.428 0.547 0.417 0.423 0.420 
WAHE [2] 0.511 0.427 0.474 0.562 0.461 0.450 0.481 
LDR [23] 0.514 0.531 0.469 0.560 0.471 0.524 0.511 
BiHE [22] 0.471 0.483 0.416 0.504 0.442 0.486 0.467 

AGCWD [17] 0.493 0.485 0.487 0.554 0.465 0.482 0.495 
IAGC [3] 0.505 0.367 0.476 0.557 0.453 0.453 0.468 

BIMEF [45] 0.561 0.430 0.544 0.556 0.510 0.520 0.520 
MF [8] 0.562 0.484 0.541 0.555 0.504 0.480 0.521 

CRF [47] 0.590 0.476 0.565 0.543 0.529 0.590 0.549 
EFF [46] 0.561 0.430 0.544 0.556 0.510 0.520 0.520 

PM-SIRE [7] 0.497 0.384 0.488 0.539 0.456 0.435 0.467 
MSRCR [20] 0.375 0.408 0.358 0.409 0.340 0.255 0.357 

pmea [34] 0.571 0.469 0.562 0.565 0.514 0.533 0.536 
Retinex Net [42] 0.572 0.475 0.548 0.532 0.531 0.557 0.536 

KinD [51] 0.567 0.514 0.558 0.548 0.525 0.569 0.547 
DPED [18] 0.439 0.465 0.453 0.535 0.410 0.420 0.453 

KinD++ [50] 0.597 0.525 0.576 0.555 0.545 0.598 0.566 
White-box [16] 0.476 0.497 0.460 0.520 0.457 0.497 0.485 
Zero-DCE [14] 0.564 0.441 0.547 0.528 0.523 0.509 0.519 
RRDNet [53] 0.499 0.364 0.500 0.559 0.453 0.428 0.467 

IBA [1] 0.588 0.480 0.561 0.513 0.543 0.563 0.541 
StableLLVE [48] 0.530 0.449 0.543 0.496 0.523 0.562 0.517 
RetinexDIP [52] 0.587 0.282 0.571 0.555 0.525 0.472 0.499 
SS Network [49] 0.606 0.534 0.578 0.506 0.572 0.618 0.569 

Ours 0.609 0.546 0.599 0.588 0.589 0.600 0.589 
 
It is the primary objective of this comparison to determine whether these methods can be 
generalized. Five publicly available test datasets are considered real low-light datasets, while 
one dataset is considered synthetic. These test datasets include a variety of images, including 
dynamic and static objects, as well as nature scenes and indoor photographs. A wide range of 
lighting conditions is also covered by these test datasets. Testing the proposed method against 
conventional and state-of-the-art methods on this selection of test datasets is appropriate for 
evaluating its generalization ability. The results of all the methods are evaluated using four 
metrics, namely Blind Image Quality Measure of Enhanced Images (BIQME), No-Reference 
Image Quality Metric for Contrast Distortion (NIQMC), Natural Image Quality Evaluator 
(NIQE), and Information Entropy (IE). An image with a low NIQE value indicates better 
image quality, while an image with a high IE, NIQMC, and BIQME value demonstrates better 
image quality. The NIQE measures the quality of distorted images by measuring the distance 
between the Natural Scene Statistical (NSS) and MultiVariate Gaussian (MVG) feature 
models. NIQMC measures the contrast quality of the enhanced image. NIQMC works on an 
information maximization approach. BIQME is a machine learning-based technique for 
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assessing the quality of enhanced images. BIQME uses 17 features, including brightness, 
contrast, color, sharpness, and naturalness, to blindly predict the quality of an image. The 
Information Entropy (IE) of an image is a no-reference metric used to quantify how much 
information it contains. 
 
Table 3. A quantitative comparison of low-light enhancement algorithms on six test datasets using the 

NIQE [30] metric. Lower NIQE values indicate better performance. The last column shows the 
average result on all test datasets by the method. Red represents the best result, while blue and green 

represent the second and third best results, respectively. 
 

Methods LIME [15] LOL[42] MEF [28] DICM [23] ExDark [24] SLL [26] Average 
Input 4.357 6.748 4.263 4.274 5.128 5.358 5.021 

CVC [4] 4.029 8.014 3.636 3.823 4.662 5.828 4.999 
CLAHE [32] 3.907 7.268 3.606 3.792 4.734 5.756 4.844 
WAHE [2] 3.921 7.802 3.510 3.858 4.569 5.649 4.885 
LDR [23] 4.162 8.336 3.632 3.937 4.596 5.745 5.068 
BiHE [22] 6.009 8.138 5.362 4.629 7.077 7.782 6.500 

AGCWD [17] 4.032 7.528 3.868 3.629 4.582 5.660 4.883 
IAGC [3] 3.951 7.418 3.652 4.015 4.557 5.740 4.889 

BIMEF [45] 3.859 7.515 3.329 3.845 4.514 5.747 4.802 
MF [8] 4.067 8.877 3.492 3.844 4.531 6.039 5.142 

CRF [47] 3.854 7.686 3.264 3.801 4.525 6.008 4.856 
EFF [46] 3.859 7.515 3.329 3.845 4.514 5.747 4.802 

PM-SIRE [7] 4.050 7.506 3.450 3.978 4.383 5.435 4.800 
MSRCR [20] 3.939 8.006 3.688 3.948 4.904 5.574 5.010 

pmea [34] 3.843 8.281 3.431 3.836 4.296 6.237 4.987 
Retinex Net [42] 4.597 8.879 4.410 4.415 4.551 7.573 5.738 

KinD [51] 4.763 4.709 3.876 4.150 4.340 4.450 4.381 
DPED [18] 7.995 5.785 8.713 8.088 6.143 5.836 7.093 

KinD++ [50] 4.385 4.616 3.738 3.804 4.343 5.090 4.329 
White-box [16] 4.598 7.819 4.622 4.630 5.534 7.138 5.724 
Zero-DCE [14] 3.769 7.767 3.283 3.567 3.917 5.998 4.717 
RRDNet [53] 3.936 7.436 3.508 3.637 4.010 5.524 4.675 

IBA [1] 4.062 7.884 3.536 3.723 4.273 5.837 4.886 
StableLLVE [48] 4.234 4.372 3.924 4.061 4.053 4.185 4.138 
RetinexDIP [52] 3.735 7.096 3.245 3.705 4.234 5.883 4.650 
SS Network [49] 4.819 3.753 4.351 4.717 4.048 5.400 4.514 

Ours 3.838 4.304 3.174 3.457 4.294 4.961 4.005 
 
The results based on the above-mentioned metrics are presented in Table 2, 3, 4, and 5. The 
best results, the second best results, and the third best results have been colored in red, blue, 
and green, respectively. A summary of the average results for each method on all six test 
datasets is provided in the last column of each table. We can gain a better understanding of the 
overall performance of each method by analyzing this average result. Based on a BIQME 
analysis, we have determined that the proposed method performs best on five test datasets and 
second best on SLL test datasets. As indicated by the BIQME measurement, our method 
produces improved brightness, contrast, sharpness, and color. Based on the average score, self-
supervised networks and Kindling the Darkness (KinD++) rank second and third, respectively. 
Both self-supervised network and KinD++ are deep learning methods based on Retinex theory. 
As a result of the NIQMC metric, our method got the best results on four and the second best 
on two test datasets, as shown in Table 4. NIQMC indicates that IBA and LDR had the second 
and third best performances, respectively. The NIQE metric results in Table 3 show that the 
proposed method produced more natural and less distorted results on MEF and DICM test 
datasets, while it has the second best performance on LOL and third best performance on 
LIME and SLL test datasets. But it still has the best overall performance on all test datasets. 
Our proposed method has the highest amount of information entropy on five test datasets and 
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the second highest amount of information on LOL test data according to our information 
entropy. 
  

Table 4. A quantitative comparison of the proposed methodology is performed with state-of-the-art 
methods on six non-reference low-light test datasets using NIQMC [12] (A higher value of NIQMC 

indicates better image quality). Red represents the best result, while blue and green represent the 
second and third best results, respectively. 

 

Methods LIME [15] LOL[42] MEF [28] DICM [23] ExDark [24] SLL [26] Average 
Input 3.918 1.602 4.197 4.641 3.982 3.655 3.666 

CVC [4] 4.997 4.244 5.066 5.294 4.945 4.841 4.898 
CLAHE [32] 4.735 2.697 4.756 5.171 4.588 4.685 4.438 
WAHE [2] 4.812 3.847 4.935 5.213 4.812 4.638 4.710 
LDR [23] 5.024 4.654 5.048 5.247 4.975 5.163 5.019 
BiHE [22] 3.987 4.639 3.877 4.446 4.040 4.322 4.218 

AGCWD [17] 4.832 4.947 5.027 5.198 4.870 4.957 4.972 
IAGC [3] 4.703 3.191 4.823 5.005 4.702 4.487 4.485 

BIMEF [45] 4.721 3.711 4.879 5.047 4.743 4.933 4.672 
MF [8] 4.869 4.502 5.042 5.116 4.834 4.761 4.854 

CRF [47] 4.974 4.277 5.033 5.040 4.917 5.348 4.932 
EFF [46] 4.721 3.711 4.879 5.047 4.743 4.933 4.672 

PM-SIRE [7] 4.592 3.532 4.803 5.008 4.603 4.540 4.513 
MSRCR [20] 3.877 4.176 3.565 4.040 3.405 2.642 3.617 

pmea [34] 4.883 4.285 4.990 5.128 4.794 4.934 4.836 
Retinex Net [42] 4.697 4.225 4.747 4.763 4.671 4.989 4.682 

KinD [51] 4.943 4.504 5.093 5.009 4.860 5.324 4.955 
DPED [18] 4.287 4.076 4.579 4.707 4.355 4.548 4.425 

KinD++ [50] 4.903 4.588 5.060 4.986 4.864 5.344 4.957 
White-box [16] 4.503 4.683 4.541 4.666 4.534 4.708 4.606 
Zero-DCE [14] 4.839 4.015 4.944 4.927 4.843 4.864 4.738 
RRDNet [53] 4.738 3.536 4.969 5.159 4.627 4.551 4.597 

IBA [1] 5.245 4.488 5.206 4.874 5.124 5.298 5.039 
StableLLVE [48] 4.644 3.691 4.849 4.644 4.755 5.044 4.604 
RetinexDIP [52] 4.875 2.726 4.968 5.008 4.682 4.478 4.456 
SS Network [49] 5.189 4.764 5.174 4.541 4.949 5.385 5.001 

Ours 5.232 4.781 5.273 5.295 5.256 5.483 5.220 
 
Table 5. A quantitative comparison of low-light enhancement algorithms on six test datasets using the 
Information Entropy [9] metric. Higher information entropy values indicate better performance. The 

last column shows the average result on all test datasets by the method. Red represents the best result, 
while blue and green represent the second and third best results, respectively. 

 

Methods LIME [15] LOL[42] MEF [28] DICM [23] ExDark [24] SLL [26] Average 
Input 6.148 4.915 6.075 6.686 5.744 5.616 5.864 

CVC [4] 6.875 6.409 6.755 7.055 6.465 6.549 6.685 
CLAHE [32] 6.764 5.679 6.583 7.088 6.302 6.591 6.501 
WAHE [2] 6.924 6.570 6.732 7.065 6.457 6.644 6.732 
LDR [23] 6.845 7.044 6.641 6.969 6.443 6.822 6.794 
BiHE [22] 5.452 4.395 5.434 5.911 5.010 4.948 5.192 

AGCWD [17] 6.792 6.415 6.648 6.925 6.248 6.278 6.551 
IAGC [3] 6.991 6.247 6.878 7.015 6.554 6.554 6.707 

BIMEF [45] 7.006 6.145 6.898 7.029 6.464 6.464 6.668 
MF [8] 7.238 6.881 7.193 7.203 6.686 6.686 6.981 

CRF [47] 6.487 4.971 6.203 6.640 5.921 5.921 6.024 
EFF [46] 7.006 6.145 6.898 7.029 6.464 6.464 6.668 

PM-SIRE [7] 7.006 6.322 6.894 7.084 6.441 6.325 6.679 
MSRCR [20] 6.563 6.841 6.455 6.677 6.319 5.936 6.465 

pmea [34] 7.284 6.824 7.273 7.220 6.725 6.638 6.994 
Retinex Net [42] 7.489 7.233 7.448 7.413 7.273 7.385 7.374 

KinD [51] 7.388 7.017 7.328 7.211 6.905 7.408 7.210 
DPED [18] 6.486 6.804 6.563 7.099 6.387 6.830 6.695 
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KinD++ [50] 7.486 7.065 7.463 7.332 7.034 7.452 7.305 
White-box [16] 5.984 5.925 5.391 6.051 5.275 5.460 5.681 
Zero-DCE [14] 7.166 6.531 7.093 7.224 6.932 6.545 6.915 
RRDNet [53] 6.646 5.457 6.453 7.142 6.426 6.077 6.367 

IBA [1] 5.905 4.913 5.749 6.826 6.971 5.465 5.972 
StableLLVE [48] 7.227 6.625 7.241 7.010 7.129 7.439 7.112 
RetinexDIP [52] 6.974 5.375 6.661 7.214 6.668 6.213 6.518 
SS Network [49] 7.497 7.404 7.469 6.675 7.296 7.484 7.304 

Ours 7.604 7.266 7.577 7.559 7.464 7.696 7.528 
 
The high average score indicates that our method generalizes well on all test datasets. The 
average score of Retinex Net and KinD++ indicates they have the second and third-best 
performance, respectively. For a better understanding of the quantitative analysis, the results 
of Table 3 to Table 4 are summarized in Fig. 5. For a better comparison of the methods, we 
have used the ranking scheme proposed in [38]. The methods are ranked based on the average 
value of each metric and shown by the graph in Fig. 5. The methods with the best performance 
got the rank 1 and poor performance got the highest ranking (i.e., 27). Our method got ranked 
one on all four metrics, whereas KinD++ got 3rd rank based on NIQE, BIQME and entropy, 
and got 6th rank based on NIQMC. The average rank is also calculated to compare the overall 
performance of the methods measured on all four metrics and shown in red color in the graph. 
The red color graph summarized the results of all four metrics and allowed a comparison of 
the overall performance of all methods on six publicly available test datasets. The average 
graph (in red color) in Fig. 5 provides further insight; for example, each of the top five methods 
belongs to the field of deep learning. This graph also includes metrics scores for the low-light 
test datasets. 
 
According to the average ranking as shown in Fig. 5, learning-based methods outperformed 
classical methods. Classical methods are limited in their ability to generalize due to their lack 
of model capacity. Furthermore, classical methods do not take into account the noise factor 
when enhancing an image. Both KinD++ and KinD are supervised learning methods that use 
only the LOL dataset for training. There are only 485 paired training images in the LOL dataset, 
while the proposed method is trained on a larger dataset. The size of training data plays a 
crucial role in the network's performance. Zero-shot learning methods (such as Self-supervised 
Nets and Zero-DCE) have also shown superior performance. In real-world situations, zero-
shot learning-based methods can perform better since they utilize the image's internal 
information. Methods based on zero-shot learning require a limited number of parameters. 
However, they require the development of an appropriate loss function to have robust 
performance. 
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Fig. 5. Based on the average values calculated in Tables 2 to 5, the overall rank of the different 
enhancement methods is shown. Rank values range from 1 to 27. According to a specific IQA 
method, the first rank indicates the best performance and the highest rank indicates the worst 

performance. Red represents the average of the assigned rank based on IQA metrics. 
 

4.6 Qualitative Comparison 
 
A visual comparison of the images of LIME [15], MEF [28], DICM [23] and synthetic low-
light (SLL) [26] test datasets are shown in Fig. 6, 7, 8, and 9, respectively. In light of the visual 
comparison of the figures mentioned above, we make the following observations: It has been 
demonstrated that among classical methods, the results of the majority of Retinex theory-based 
methods (e.g., Bio-Inspired Multi-Exposure Fusion framework (BIMEF) [45], Camera 
Response Function (CRF) [47], EFF [46], PMEA [34], Multi-Fusion (MF) [28], Probabilistic 
Method with Simultaneous Illumination and Reflectance Estimation (PM-SIRE)[7] ) are better 
than those of histogram and gamma correction-based methods. These Retinex-based methods 
produce images that appear more natural. Although MultiScale Retinex with Color Restoration 
(MSRCR) is a Retinex Theory-based method, it suffers greatly from global lightness distortion, 
cannot correctly recover colors, and a whitewash effect can be observed in all results. 
Generally, the results of histogram based methods (such as Contextual and Variational 
Contrast enhancement (CVC) [4], Contrast-limited adaptive histogram equalization (CLAHE) 
[32], Weighted Approximated Histogram Equalization (WAHE) [2], Layered Difference 
Representation (LDR) [23]) have low brightness, low contrast, and underexposed regions. The 
image has not been uniformly enhanced by these methods. As a result of the underexposure 
problem, these methods could not reveal hidden details. The Improved Adaptive Gamma 
Correction (IAGC) results are superior to the Adaptive Gamma Correction with Weighting 
Distribution (AGCWD) [17] results. The robustness of the Retinex theory makes it suitable 
for use even in learning-based methods. RetinexNet [42] is a deep learning network based on 
Retinex theory. The visual results of RetinexNet are not only subject to severe noise and 
contrast distortion but also appear unnatural. KinD is another Retinex-based method, 
displaying an underexposure issue in the DICM test data image. Eventually, an advanced 
version of KinD [51] was developed and named KinD++ [50]. As a result of KinD++, this 
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problem of underexposure is eliminated. StableLLVE suffers from a smoothness around the 
edges as well as from a global distortion of lightness. On the DICM test image, the smoothness 
is more apparent. When compared to other learning-based methods, the results of DPED [18], 
White-box, and Robust Retinex Decomposition Network (RRDNet) [53] are relatively less 
bright. White-box suffers greatly from underexposure on LIME, DICM, and MEF test images, 
whereas it performs relatively well on synthetic images. Kind++ and self-supervised networks 
(SS Net) revealed pale yellow hues in the test images of MEF and DICM. In RetinexDIP [52] 
results on MEF test images, this pale yellow color is also visible, but it is more prominent in 
Self-supervised Net results. On the DICM test image, the illumination boost algorithm (IBA) 
suffers from overexposure, which leads to the loss of texture details. In comparison to the 
traditional methods, advanced deep learning-based methods produce more natural results. The 
method we have proposed not only enhances local regions but also enhances global regions. 
It has a high contrast ratio, less noise, better sharpness, and better brightness. In addition, it 
solves the underexposure issue and reveals the hidden details. Details and contrast are richer 
in our method. Using these visual comparisons, we can demonstrate the robustness and 
generalizability of our proposed method. 
 

 
 
Fig. 6. Visual comparison with state-of-the-art methods on the input image from the LIME test dataset 

[15]. Please zoom in for a more detailed comparison. 
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Fig. 7. Visual comparison with state-of-the-art methods on the input image from the MEF test dataset 

[28]. Please zoom in for a more detailed comparison. 
 

 
Fig. 8. Visual comparison with state-of-the-art methods on the input image from the DICM test 

dataset [23]. Please zoom in for a more detailed comparison. 
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Fig. 9. Visual comparison with state-of-the-art methods on the input image from the Synthetic Low-

Light (SLL) test dataset [26]. Please zoom in for a more detailed comparison. 
 
 

 
(a) 

 
(b) 

 
Fig. 10. For a better comparison, average time versus average rank is shown. (a) shows the average 

time versus average rank for classical methods and (b) shows the average time versus average rank for 
learning-based methods.  
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Table 6. Computing time comparison of deep learning-based methods on different resolution images 
(in seconds) on GPU (NVIDIA TITAN Xp). 

Methods 600 × 400 × 3 960 × 640 × 3 2304 × 1728 × 3 Parameter Avg. 
Retinex Net [42] 0.155 0.162 0.591 0.440M 0.303 

KinD [51] 0.334 0.604 3.539 0.255M 1.492 
KinD++ [50] 0.337 0.857 5.408 8.275M 2.201 
DPED [18] 0.247 0.282 1.040 7.760M 0.523 

White-box [16] 6.040 6.483 9.833 8.560M 7.452 
Zero-DCE [14] 0.0025 0.0026 0.021 0.079M 0.009 
RRDNet [53] 59.479 128.217 893.0 0.128M 360.232 

StableLLVE [48] 0.0047 0.005 0.0076 4.310M 0.006 
RetinexDIP [52] 33.924 37.015 63.443 0.707M 44.794 

Self-supervised Network [49] 0.022 0.054 0.366 0.485M 0.147 
Ours 0.106 0.168 0.625 0.507M 0.300 

 
Table 7. Computing time comparison of classical methods on different resolution images (in seconds) 

on CPU. 
Methods 600 × 400×3 960 × 640×3 2304 × 1728×3 Avg. 
CVC [4] 0.086 0.230 1.150 0.489 

CLAHE [32] 0.00033 0.00099 0.0058 0.002 
WAHE [2] 0.003 0.009 0.055 0.022 
LDR [23] 0.013 0.027 0.136 0.059 
BiHE [22] 0.016 0.036 0.161 0.071 

AGCWD [17] 0.032 0.053 0.344 0.143 
IAGC [3] 0.038 0.155 1.025 0.406 

BIMEF [45] 0.123 0.359 1.811 0.764 
MF [8] 0.215 0.422 2.275 0.971 

CRF [48] 0.215 0.422 2.275 0.971 
EFF [47] 0.136 0.407 1.973 0.839 

PM-SIRE [7] 0.402 1.340 28.948 10.230 
MSRCR [20] 0.322 0.704 2.787 1.271 

pmea [34] 0.646 0.874 2.307 1.276 
IBA [1] 0.0311 0.0829 0.512 0.209 

Ours 0.618 1.080 7.093 2.930 
 

4.7 Computational Comparison 
We have compared the computing time (in seconds) of the proposed method with learning 
based method on GPU (NVIDIA TITAN Xp) in Table 6 and classical ones on CPU (Intel(R) 
Core(TM) i7-6700 CPU @ 3.40GHz) in Table 7. All methods are computed using three 
different resolution images. The number of training parameters (in Million) is also reported in 
the second last column of Table 6 for learning-based methods. The scatter plots of average 
time vs average rank for classical methods and learning-based methods are plotted in Fig. 10a 
and Fig. 10b, respectively. Only methods having a duration of less than 10 seconds are 
reported in these plots. The method closer to the origin of these graphs is more efficient and 
has better generalization ability. It can be seen from this that our method is least efficient as 
compared to classical methods, but it has better generalization ability. The simple nature of 
classical methods makes them fasters, whereas they lack the model capacity to generalize well 
in real-world images.  Furthermore, the Retinex theory-based classical methods (i.e., MSRCR, 
pmea, EFF, BIMEF) are less efficient as compared to Histogram Equalization (i.e., Bi-
Histogram Equalization (BiHE), CVC, CLAHE,WAHE, LDR, CVC) and Gamma correction 
(i.e., IAGC, AGCWE) based methods. The main reason for the less efficient performance of 
the Retinex-based method is the need to decompose an image into illumination and reflectance 
maps first. The runtime comparison of the proposed method against learning-based methods 
is shown in Fig. 10b. The closeness of our method to the origin reveals it is efficient as 
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compared to the majority of methods. The zero-DCE, StableLLVE, and self-supervised 
networks are faster than the proposed methods due to their simpler network architecture. Due 
to the longer computation times, RetinexDIP and RRDNet are not included in the scatter plot. 
In both methods, errors are minimized iteratively. For RetinexDIP, 300 iterations are required 
to process a single image, whereas RRDNet does not have a fixed number of iterations. This 
makes these two methods more time-consuming. 

5. Conclusion 
The paper presents a lightweight and robust deep network based on pixel-wise polynomial 
estimation that can enhance low-light images. A deep convolution network is used to estimate 
the coefficient of higher-order polynomials in a supervised learning way. In addition, the 
proposed network uses four parallel branches to estimate pixel values based on different 
receptive fields, which enhances both local and global details. The combination of CNNs with 
higher-order polynomials facilitates the development of the lightweight model. The proposed 
network has demonstrated well-adjusted contrast, better color details, sharper details, and 
better generalization ability on six publicly available datasets, however, noise and color shift 
can be observed in the visual results on the DICM dataset. A denoising module will be 
designed as part of our future work to mitigate these issues. A SSIM-based objective function 
is used for the network's training. The SSIM uses the specific structure as a basis for assessing 
a prediction. It is, therefore, necessary to design a more rational loss function that is capable 
of evaluating not only any possible structure but also details (e.g., color, contrast, dynamic 
range, etc.). With our proposed network, we are able to improve an image for a resolution of 
960 x 640 x 3 in just 0.168 seconds on the GPU. Despite this speed being adequate for real-
time enhancement of images, it is not quite sufficient for low-light video enhancement. An 
additional research direction can be the optimization and improvement of the presented 
pipeline for video enhancement. 
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