• Title/Summary/Keyword: Network Density

Search Result 1,069, Processing Time 0.024 seconds

Onset Time Estimation of P- and S-waves at Gyeongsan Seismic Station Using Akaike Information Criterion (AIC) (Akaike Information Criterion (AIC)를 이용한 경산 지진관측소 P파와 S파 도착시간 자동추정)

  • Kwon, Joa;Kang, Su Young;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2018
  • The onset times of P- and S-waves are important information to have reliable earthquake locations, 1D or 3D subsurface velocity structures, and other related studies in seismology. As the number of seismic stations increases significantly in recent years, it becomes a formidable task for network operators to pick phase arrivals manually. This study used a simple method to estimate additional P- and S-wave arrival times for local earthquakes when a priori information (event location and time) is available using the Akaike Information Criterion (AIC). We applied the AIC program to the earthquake data recorded at the seismic station located in Gyeongsan (DAG2). The comparisons of automatically estimated phase arrival times with manually picked onset times showed that 95.1% and 93.7% of P-wave and S-wave arrival time estimations, respectively, are less than 0.1 second difference. The higher percentage of agreement presented the method which can be successfully applied to large data sets recorded by high-density seismic arrays.

BAT AGN Spectroscopic Survey - The parsec scale jet properties of the ultra hard X-ray selected local AGNs

  • Baek, Junhyun;Chung, Aeree;Schawinski, Kevin;Oh, Kyuseok;Wong, Ivy;Koss, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • We have conducted a 22 GHz very long baseline interferometry (VLBI) survey of 281 local (z < 0.05) active galactic nuclei (AGNs) selected from the Swift Burst Alert Telescope (BAT) 70-month ultra hard X-ray (14-195 keV) catalog. The main goal is to investigate the relation between the strengths of black hole accretion and the parsec-scale nuclear jet, which is expected to tightly correlate but has not been observationally confirmed yet. The BAT AGN Spectroscopic Survey (BASS) provides the least biased AGN sample against obscuration including both Seyfert types, hence it makes an ideal parent sample for studying the nuclear jet properties of an overall AGN population. Using the Korean VLBI Network (KVN), the KVN and VERA Array (KaVA), and the Very Long Baseline Array (VLBA), we observed 281 objects with a 22 GHz flux > 30 mJy, detecting 11 targets (~4% of VLBI detection rate). This implies that the fraction of X-ray AGNs which are currently ejecting a strong nuclear jet is very small. Although our 11 sources span a wide range of pc-scale morphological types, from compact to complex, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our finding may indicate that the power of nuclear jet is directly responsible for the amount of black hole accretion. We also have probed the fundamental plane of black hole activity in VLBI scale (e.g., few milli-arcsecond). The results from our high-frequency VLBI radio study support that the change of jet luminosity and size follows what is predicted by the AGN evolution scenario based on the Eddington ratio (ƛ$_{Edd}$) - column density ($N_H$) plane, proposed by a previous study.

  • PDF

Evaluation on Sensitivity and Approximate Modeling of Fire-Resistance Performance for A60 Class Deck Penetration Piece Using Heat-Transfer Analysis and Fire Test

  • Park, Woo Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM (정전기력 현미경을 사용한 메조포러스 실리카/나피온 합성 이온교환막의 표면 전하 및 모폴로지 연구)

  • Kwon, Osung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1173-1182
    • /
    • 2018
  • Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.

Level of Service Evaluation of Pedestrian Road Using Micro-Simulation (미시적 교통 시뮬레이션을 활용한 보행자도로 서비스 수준 평가)

  • Park, Soon Yong;Cho, Hyerim;Cho, Ga Young;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.26-36
    • /
    • 2020
  • The use of existing macroscopic research of pedestrian behavior on the walking link as data is limited in determining an individual pedestrian's moving route and the level of service. In macroscopic studies, it is difficult to make quantitative indices, such as pedestrian flow rate, occupied space, density, and speed for determining the level of service on pedestrian roads. Therefore, the microscopic pedestrian route is required to establish appropriate pedestrian policies. In this study, the Yeok-Sam subway station network was examined using a micro-simulation VISSIM, which was then calibrated and validated statistically. The Pedestrian Road's Level of Service of Yeok-Sam subway station area was evaluated using the pedestrian speed as the evaluating index on the Korean highway capacity handbook.

Emergency Rescue Guidance Scheme Using Wireless Sensor Networks (재난 상황 시 센서 네트워크 기반 구조자 진입 경로 탐색 방안)

  • Joo, Yang-Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1248-1253
    • /
    • 2019
  • Using current evacuation methods, a crew describes the physical location of an accident and guides evacuation using alarms and emergency guide lights. However, in case of an accident on a large and complex building, an intelligent and effective emergency evacuation system is required to ensure the safety of evacuees. Therefore, several studies have been performed on intelligent path finding and emergency evacuation algorithms which are centralized guidance methods using gathered data from distributed sensor nodes. However, another important aspect is effective rescue guidance in an emergency situation. So far, there has been no consideration on the efficient rescue guidance scheme. Therefore, this paper proposes the genetic algorithm based emergency rescue guidance method using distributed wireless sensor networks. Performance evaluation using a computer simulation shows that the proposed scheme guarantees efficient path finding. The fitness converges to the minimum value in reasonable time. The density of each exit node is remarkably decreased as well.

Estimating TOC Concentrations Using an Optically-Active Water Quality Factors in Estuarine Reservoirs (광학특성을 가진 수질변수를 활용한 하구 담수호 내 TOC 농도 추정)

  • Kim, Jinuk;Jang, Wonjin;Shin, Jaeki;Kang, Euntae;Kim, Jinhwi;Park, Yongeun;Kim, Seongjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.531-538
    • /
    • 2021
  • In this study, the TOC in six estuarine reservoirs in the West Sea (Ganwol, Namyang, Daeho, Bunam, Sapkyo, and Asan) was estimated using optically-active water quality factors by the water environment monitoring network. First, specification data and land use maps of each estuarine reservoir were collected. Subsequently, water quality data from 2013 to 2020 were collected. The data comprised of 11 parameters: pH, dissolved oxygen, BOD, COD, suspended solids (SS), total nitrogen, total phosphorus, water temperature, electrical conductivity, total coliforms, and chlorophyll-a (Chl-a). The TOC in the estuarine reservoirs was 4.9~7.0 mg/L, with the highest TOC of 7.0 mg/L observed at the Namyang reservoir, which has a low shape coefficient and high drainage density. The correlation of TOC with water quality factors was also analyzed, and the correlation coefficients of Chl-a and SS were 0.28 and 0.19, respectively, while the correlation coefficients of these factors in the Namyang reservoir were 0.42 and 0.27, respectively. To improve the estimation of TOC using Chl-a and SS, the TOC was averaged in 5 mg/L units, and Chl-a and SS were averaged. Correlation analysis was then performed and the R2 of Chl-a-TOC was 0.73. The R2 of SS-TOC was 0.73 with a non-linear relationship. TOC had a significant non-linear relationship with Chl-a and SS. However, the relationship should be assessed in terms of the spatial and temporal variations to construct a reliable remote sensing system.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Measuring Korea's Industry-level Productivity Change Due to Tariff Cuts using a CGE Model

  • Roh, Jaewhak;Roh, Jaeyoun
    • Journal of Korea Trade
    • /
    • v.25 no.3
    • /
    • pp.48-64
    • /
    • 2021
  • Purpose - This study examined the effect of tariff cuts on productivity in Korea's manufacturing industries and the effect of initial productivity level before tariff cuts on productivity improvement after tariff cuts. We also attempted to identify whether import-driven or export-driven factors are more important for productivity improvement, especially in low productivity industries. Design/methodology - Since tariff reduction is a policy decision that can affect cross-industry, its impact is spread across all industries beyond the scope of a single firm through the input and output network of industry structure. Accordingly, we proposed a new method to measure the change in productivity to reflect the impact of tariff cuts across industries. Through an Armington CGE analysis, changes in endogenous variables can be directly measured after the exogenous shock of tariff reduction, and the amount of movements in productivity triggered by tariff cuts can also be calculated. We can thus assess the effectiveness of exogenous policy, such as tariff cuts, through the difference between the benchmark and counterfactual values of endogenous variables. Findings - This study confirmed that tariff reduction positively affected productivity improvement in Korea's manufacturing industries. It also confirmed that productivity gains occur in Korea's leading export industries. Finally, greater productivity gains were recorded in the group with additional high-export-share or high-import-share conditions for low productivity industries. These results are, in a limited sense, consistent with the existing studies that emphasize the importance of exports and imports on productivity improvement, especially for low productivity industries. Originality/value - The results of our experiments are different from those of non-CGE studies, which measure the industry-level change in productivity with dummy coefficients, in terms of directly calculating the amount of change in productivity. In addition, we propose that the Armington CGE model is more appropriate than the Melitz CGE model to directly measure the productivity after tariff cuts. This is because the Melitz CGE model assumes the given specific productivity density, which does not change after an overall drop of tariffs. To the best of our knowledge, this approach to directly calculating productivity by reflecting the impact of tariff reduction across industries through CGE analysis, is unprecedented in this literature.

Derivation of endothelial cells from porcine induced pluripotent stem cells by optimized single layer culture system

  • Wei, Renyue;Lv, Jiawei;Li, Xuechun;Li, Yan;Xu, Qianqian;Jin, Junxue;Zhang, Yu;Liu, Zhonghua
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2020
  • Regenerative therapy holds great promise in the development of cures of some untreatable diseases such as cardiovascular diseases, and pluripotent stem cells (PSCs) including induced PSCs (iPSCs) are the most important regenerative seed cells. Recently, differentiation of human PSCs into functional tissues and cells in vitro has been widely reported. However, although porcine reports are rare they are quite essential, as the pig is an important animal model for the in vitro generation of human organs. In this study, we reprogramed porcine embryonic fibroblasts into porcine iPSCs (piPSCs), and differentiated them into cluster of differentiation 31 (CD31)-positive endothelial cells (ECs) (piPSC-derived ECs, piPS-ECs) using an optimized single-layer culture method. During differentiation, we observed that a combination of GSK3β inhibitor (CHIR99021) and bone morphogenetic protein 4 (BMP4) promoted mesodermal differentiation, resulting in higher proportions of CD31-positive cells than those from separate CHIR99021 or BMP4 treatment. Importantly, the piPS-ECs showed comparable morphological and functional properties to immortalized porcine aortic ECs, which are capable of taking up low-density lipoprotein and forming network structures on Matrigel. Our study, which is the first trial on a species other than human and mouse, has provided an optimized single-layer culture method for obtaining ECs from porcine PSCs. Our approach can be beneficial when evaluating autologous EC transplantation in pig models.