• Title/Summary/Keyword: Network Architecture

Search Result 3,658, Processing Time 0.04 seconds

Evaluation Of The Content-Based Packet Scheduling Policies On The Multithreaded Multiprocessor Network System

  • Yim Kangbin
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.39-41
    • /
    • 2004
  • In this paper, I propose a thread scheduling policy for faster packet processing on the network processors with multithreaded multiprocessor architecture. To implement the proposed policy, I derived several basic parameters related to the thread scheduling and included a new parameter representing the packet contents and the features of the multithreaded architecture. Through the empirical study using a network processor, I proved the proposed scheduling ploicy provides better throughput and load balancing compared to the generally used thread scheduling policy.

  • PDF

A Method of Implementation for Integrated Aeronautical Data Management Network Using SWIM Architecture (SWIM 구조를 이용한 항공데이터 종합관리망 구축 방안)

  • Kim, Jin-Wook;Jo, Yun-Hyun;Kim, Sang-Uk;Yoon, In-Seop;Choi, Sang-Bang;Chung, Jae Hak;Park, Hyo-Dal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.44-53
    • /
    • 2013
  • Ongoing SWIM(System Wide Information Management) with the United States and European countries as the center is a part of the ASBU(Aviation System Block Upgrade) program improved performance of aeronautical data system in the International Civil Aviation Organization and a core technology of Integrated Aeronautical Data Management Network to elevate service through digitally aeronautical information management. Therefore, in this paper, we analyze SWIM architecture and network applied the concept of SOA(Service Oriented Architecture), and propose methods of implementation transforming applications operating established legacy aeronautical data system into integrated aeronautical data management network through adapter technology. This will allow development of middleware and application suitable for the next generation infrastructure network environment for efficient ATM(Air Traffic Management)and provide timely required information for users.

Phase Noise Self-Cancellation Scheme Based on Orthogonal Polarization for OFDM System

  • Nie, Yao;Feng, Chunyan;Liu, Fangfang;Guo, Caili;Zhao, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4334-4356
    • /
    • 2017
  • In orthogonal frequency-division multiplexing (OFDM) systems, phase noise introduced by the local oscillators can cause bit error rate (BER) performance degradation. To solve the phase noise problem, a novel orthogonal-polarization-based phase noise self-cancellation (OP-PNSC) scheme is proposed. First, the efficiency of canceling the phase noise of the OP-PNSC scheme in the AWGN channel is investigated. Then, the OP-PNSC scheme in the polarization-dependent loss (PDL) channel is investigated due to power imbalance caused by PDL, and a PDL pre-compensated OP-PNSC (PPC -OP-PNSC) scheme is proposed to mitigate the power imbalance caused by PDL. In addition, the performance of the PPC-OP-PNSC scheme is investigated, where the signal-to-interference-plus-noise ratio (SINR) and spectral efficiency (SE) performances are analyzed. Finally, a comparison between the OP-PNSC and polarization diversity scheme is discussed. The numerical results show that the BER and SINR performances of the OP-PNSC scheme outperform the case with the phase noise compensation and phase noise self-cancellation scheme.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

High Performance 32-bit Embedded AES for Wireless Network Router Applications (무선 네트웤 라우터응용을 위한 고성능32비트 내장AES)

  • Lin, Deng;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.97-104
    • /
    • 2010
  • This paper presents a high performance 32-bit single core AES architecture. The proposed architecture employs a 5-stage pipeline: four stages in the ShiftRows/InvShiftRows module, and one stage in the MixColumn/InvMixColumn module. Circuit size reduction has been achieved through merging of the shift rows and inverse shift rows. The mix column and inverse mix column share the same resources. Three 32-bit registers replace the conventional ten 32-bit registers in the RCON architecture. The proposed architecture has been implemented in Verilog HDL, and yields 415 Mbits/s throughput with the circuit size of 13764 gate equivalents on the 0.18um CMOS process technology. This high performance architecture is suitable for wireless network router applications.

Performance Comparison of Security System with Various Collaboration Architecture (다양한 연동 구조를 통한 보안 시스템의 성능 비교)

  • 김희완;서희석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.235-242
    • /
    • 2004
  • As e-business being rapidly developed the importance of security is on the rise in network. Intrusion detection systems which are a core security system detect the network intrusion trial. As intrusions become more sophisticated, it is beyond the scope of any one IDS to deal with them. Thus we placed multiple IDS agents in the network and the information helpful for detecting the intrusions is shared among these agents to cope effectively with attackers. Each agent cooperates through the BBA (Black Board Architecture) and CNP (Contract Net Protocol) for detecting intrusions. In this paper, we propose the effective method comparing the blackboard architecture to contract net protocol.

  • PDF

Design and Implementation of On-Chip Network Architecture for Improving Latency Efficiency (지연시간 효율 개선을 위한 On-Chip Network 구조 설계 및 구현)

  • Jo, Seong-Min;Cho, Han-Wook;Ha, Jin-Seok;Song, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.56-65
    • /
    • 2009
  • As increasing the number of IPs integrated in a single chip and requiring high communication bandwidth on a chip, the trend of SoC communication architecture is changed from bus- or crossbar-based architecture to packet switched network architecture, NoC. However, highly complex control logics in routers require multiple cycles to switch packet. In this paper, we design low complex router to improve the communication latency. Our NoC design is verified by simulation platform modeled by ESL tool, SoC Designer. We also evaluate our NoC design comparing to the previous NoC architecture based on VC router. Our results show that our NoC architecture has less communication latency, even small throughput degradation (about 1-2%).

Blockchain-based Data Storage Security Architecture for e-Health Care Systems: A Case of Government of Tanzania Hospital Management Information System

  • Mnyawi, Richard;Kombe, Cleverence;Sam, Anael;Nyambo, Devotha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.364-374
    • /
    • 2022
  • Health information systems (HIS) are facing security challenges on data privacy and confidentiality. These challenges are based on centralized system architecture creating a target for malicious attacks. Blockchain technology has emerged as a trending technology with the potential to improve data security. Despite the effectiveness of this technology, still HIS are suffering from a lack of data privacy and confidentiality. This paper presents a blockchain-based data storage security architecture integrated with an e-Health care system to improve its security. The study employed a qualitative research method where data were collected using interviews and document analysis. Execute-order-validate Fabric's storage security architecture was implemented through private data collection, which is the combination of the actual private data stored in a private state, and a hash of that private data to guarantee data privacy. The key findings of this research show that data privacy and confidentiality are attained through a private data policy. Network peers are decentralized with blockchain only for hash storage to avoid storage challenges. Cost-effectiveness is achieved through data storage within a database of a Hyperledger Fabric. The overall performance of Fabric is higher than Ethereum. Ethereum's low performance is due to its execute-validate architecture which has high computation power with transaction inconsistencies. E-Health care system administrators should be trained and engaged with blockchain architectural designs for health data storage security. Health policymakers should be aware of blockchain technology and make use of the findings. The scientific contribution of this study is based on; cost-effectiveness of secured data storage, the use of hashes of network data stored in each node, and low energy consumption of Fabric leading to high performance.

Secure and Efficient Key Management Scheme for Wireless Mesh Network (무선 메쉬망에서의 안전하고 효율적인 키관리 스킴)

  • Salam, Md. Iftekhar;Singh, Madhusudan;Lee, Sang-Gon;Lee, Hoon-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.844-847
    • /
    • 2011
  • Wireless mesh network (WMN) is a type of mobile ad-hoc network consists of wireless router, mobile clients and gateway which connects the network with the Internet. To provide security in the network it is required to encrypt the message sent among the communicating nodes in such way so that only legitimate user can retrieve the original data. Several security mechanisms have been proposed so far to enhance the security of WMN. However, there still exists a need for a comprehensive mechanism to prevent attacks in data communication. Considering the characteristic of mesh network, in this paper we proposed a public key cryptography based security architecture to establish a secure key agreement among communicating nodes in mesh network. The proposed security architecture consists of two major sections: client data protection and network data protection. Client data protection deals with the mutual authentication between the client and the access router and provide client to access router encryption for data confidentiality using standard IEEE 802.11i protocol. On the other hand, network data protection ensures encrypted routing and data transfer in the multi hop backbone network. For the network data protection, we used the pre-distributed public key to form a secure backbone infrastructure.

Scalable Network Architecture for Flow-Based Traffic Control

  • Song, Jong-Tae;Lee, Soon-Seok;Kang, Kug-Chang;Park, No-Ik;Park, Heuk;Yoon, Sung-Hyun;Chun, Kyung-Gyu;Chang, Mi-Young;Joung, Jin-Oo;Kim, Young-Sun
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.205-215
    • /
    • 2008
  • Many control schemes have been proposed for flow-level traffic control. However, flow-level traffic control is implemented only in limited areas such as traffic monitoring and traffic control at edge nodes. No clear solution for end-to-end architecture has been proposed. Scalability and the lack of a business model are major problems for deploying end-to-end flow-level control architecture. This paper introduces an end-to-end transport architecture and a scalable control mechanism to support the various flow-level QoS requests from applications.

  • PDF