• Title/Summary/Keyword: Network Anomaly Detection

Search Result 227, Processing Time 0.024 seconds

A DoS Detection Method Based on Composition Self-Similarity

  • Jian-Qi, Zhu;Feng, Fu;Kim, Chong-Kwon;Ke-Xin, Yin;Yan-Heng, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1463-1478
    • /
    • 2012
  • Based on the theory of local-world network, the composition self-similarity (CSS) of network traffic is presented for the first time in this paper for the study of DoS detection. We propose the concept of composition distribution graph and design the relative operations. The $(R/S)^d$ algorithm is designed for calculating the Hurst parameter. Based on composition distribution graph and Kullback Leibler (KL) divergence, we propose the composition self-similarity anomaly detection (CSSD) method for the detection of DoS attacks. We evaluate the effectiveness of the proposed method. Compared to other entropy based anomaly detection methods, our method is more accurate and with higher sensitivity in the detection of DoS attacks.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Anomaly Detection Mechanism against DDoS on BcN (BcN 상에서의 DDoS에 대한 Anomaly Detection 연구)

  • Song, Byung-Hak;Lee, Seung-Yeon;Hong, Choong-Seon;Huh, Eui-Nam;Sohn, Seong-Won
    • Journal of Internet Computing and Services
    • /
    • v.8 no.2
    • /
    • pp.55-65
    • /
    • 2007
  • BcN is a high-quality broadband network for multimedia services integrating telecommunication, broadcasting, and Internet seamlessly at anywhere, anytime, and using any device. BcN is Particularly vulnerable to intrusion because it merges various traditional networks, wired, wireless and data networks. Because of this, one of the most important aspects in BcN is security in terms of reliability. So, in this paper, we suggest the sharing mechanism of security data among various service networks on the BcN. This distributed, hierarchical architecture enables BcN to be robust of attacks and failures, controls data traffic going in and out the backbone core through IP edge routers integrated with IDRS. Our proposed anomaly detection scheme on IDRS for BcN service also improves detection rate compared to the previous conventional approaches.

  • PDF

Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System (근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템)

  • Lee, Woosol;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.471-480
    • /
    • 2016
  • Recently, the damage of cyber attack toward infra-system, national defence and security system is gradually increasing. In this situation, military recognizes the importance of cyber warfare, and they establish a cyber system in preparation, regardless of the existence of threaten. Thus, the study of Intrusion Detection System(IDS) that plays an important role in network defence system is required. IDS is divided into misuse and anomaly detection methods. Recent studies attempt to combine those two methods to maximize advantagesand to minimize disadvantages both of misuse and anomaly. The combination is called Hybrid IDS. Previous studies would not be inappropriate for near real-time network environments because they have computational complexity problems. It leads to the need of the study considering the structure of IDS that have high detection rate and low computational cost. In this paper, we proposed a Hybrid IDS which combines C4.5 decision tree(misuse detection method) and Weighted K-means algorithm (anomaly detection method) hierarchically. It can detect malicious network packets effectively with low complexity by applying mutual information and genetic algorithm based efficient feature selection technique. Also we construct upgraded the the hierarchical structure of IDS reusing feature weights in anomaly detection section. It is validated that proposed Hybrid IDS ensures high detection accuracy (98.68%) and performance at experiment section.

SAD : Web Session Anomaly Detection based on Bayesian Estimation (베이지언 추정을 이용한 웹 서비스 공격 탐지)

  • 조상현;김한성;이병희;차성덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.115-125
    • /
    • 2003
  • As Web services are generally open for external uses and not filtered by Firewall, these result in attacker's target. Web attacks which exploit vulnerable web-applications and malicious users' requests cause economical and social problems. In this paper, we are modelling general web service usages based on user-web-session and detect anomal usages with Bayesian estimation method. Finally we propose SAD(Session Anomaly Detection) for detection unknown web attacks. To evaluate SAD, we made an experiment on attack simulation with web vulnerability scanner, whisker. The results show that the detection rate of SAD is over 90%, which is influenced by several features such as size of window or training set, detection filter method and web topology.

Network Anomaly Detection Technologies Using Unsupervised Learning AutoEncoders (비지도학습 오토 엔코더를 활용한 네트워크 이상 검출 기술)

  • Kang, Koohong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.617-629
    • /
    • 2020
  • In order to overcome the limitations of the rule-based intrusion detection system due to changes in Internet computing environments, the emergence of new services, and creativity of attackers, network anomaly detection (NAD) using machine learning and deep learning technologies has received much attention. Most of these existing machine learning and deep learning technologies for NAD use supervised learning methods to learn a set of training data set labeled 'normal' and 'attack'. This paper presents the feasibility of the unsupervised learning AutoEncoder(AE) to NAD from data sets collecting of secured network traffic without labeled responses. To verify the performance of the proposed AE mode, we present the experimental results in terms of accuracy, precision, recall, f1-score, and ROC AUC value on the NSL-KDD training and test data sets. In particular, we model a reference AE through the deep analysis of diverse AEs varying hyper-parameters such as the number of layers as well as considering the regularization and denoising effects. The reference model shows the f1-scores 90.4% and 89% of binary classification on the KDDTest+ and KDDTest-21 test data sets based on the threshold of the 82-th percentile of the AE reconstruction error of the training data set.

Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks

  • Naseer, Sheraz;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5159-5178
    • /
    • 2018
  • Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.

Interactive Visual Analytic Approach for Anomaly Detection in BGP Network Data (BGP 네트워크 데이터 내의 이상징후 감지를 위한 인터랙티브 시각화 분석 기법)

  • Choi, So-mi;Kim, Son-yong;Lee, Jae-yeon;Kauh, Jang-hyuk;Kwon, Koo-hyung;Choo, Jae-gul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.135-143
    • /
    • 2022
  • As the world has implemented social distancing and telecommuting due to the spread of COVID-19, real-time streaming sessions based on routing protocols have increased dependence on the Internet due to the activation of video and voice-related content services and cloud computing. BGP is the most widely used routing protocol, and although many studies continue to improve security, there is a lack of visual analysis to determine the real-time nature of analysis and the mis-detection of algorithms. In this paper, we analyze BGP data, which are powdered as normal and abnormal, on a real-world basis, using an anomaly detection algorithm that combines statistical and post-processing statistical techniques with Rule-based techniques. In addition, we present an interactive spatio-temporal analysis plan as an intuitive visualization plan and analysis result of the algorithm with a map and Sankey Chart-based visualization technique.

Development of Security Anomaly Detection Algorithms using Machine Learning (기계 학습을 활용한 보안 이상징후 식별 알고리즘 개발)

  • Hwangbo, Hyunwoo;Kim, Jae Kyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • With the development of network technologies, the security to protect organizational resources from internal and external intrusions and threats becomes more important. Therefore in recent years, the anomaly detection algorithm that detects and prevents security threats with respect to various security log events has been actively studied. Security anomaly detection algorithms that have been developed based on rule-based or statistical learning in the past are gradually evolving into modeling based on machine learning and deep learning. In this study, we propose a deep-autoencoder model that transforms LSTM-autoencoder as an optimal algorithm to detect insider threats in advance using various machine learning analysis methodologies. This study has academic significance in that it improved the possibility of adaptive security through the development of an anomaly detection algorithm based on unsupervised learning, and reduced the false positive rate compared to the existing algorithm through supervised true positive labeling.

Fast Detection of Distributed Global Scale Network Attack Symptoms and Patterns in High-speed Backbone Networks

  • Kim, Sun-Ho;Roh, Byeong-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.3
    • /
    • pp.135-149
    • /
    • 2008
  • Traditional attack detection schemes based on packets or flows have very high computational complexity. And, network based anomaly detection schemes can reduce the complexity, but they have a limitation to figure out the pattern of the distributed global scale network attack. In this paper, we propose an efficient and fast method for detecting distributed global-scale network attack symptoms in high-speed backbone networks. The proposed method is implemented at the aggregate traffic level. So, our proposed scheme has much lower computational complexity, and is implemented in very high-speed backbone networks. In addition, the proposed method can detect attack patterns, such as attacks in which the target is a certain host or the backbone infrastructure itself, via collaboration of edge routers on the backbone network. The effectiveness of the proposed method are demonstrated via simulation.