• Title/Summary/Keyword: Network Access Delay

Search Result 501, Processing Time 0.023 seconds

The Performance Analysis of Cognitive-based Overlay D2D Communication in 5G Networks

  • Abdullilah Alotaibi;Salman A. AlQahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.178-188
    • /
    • 2024
  • In the near future, it is expected that there will be billions of connected devices using fifth generation (5G) network services. The recently available base stations (BSs) need to mitigate their loads without changing and at the least monetary cost. The available spectrum resources are limited and need to be exploited in an efficient way to meet the ever-increasing demand for services. Device to Device communication (D2D) technology will likely help satisfy the rapidly increasing capacity and also effectively offload traffic from the BS by distributing the transmission between D2D users from one side and the cellular users and the BS from the other side. In this paper, we propose to apply D2D overlay communication with cognitive radio capability in 5G networks to exploit unused spectrum resources taking into account the dynamic spectrum access. The performance metrics; throughput and delay are formulated and analyzed for CSMA-based medium access control (MAC) protocol that utilizes a common control channel for device users to negotiate the data channel and address the contention between those users. Device users can exploit the cognitive radio to access the data channels concurrently in the common interference area. Estimating the achievable throughput and delay in D2D communication in 5G networks is not exploited in previous studies using cognitive radio with CSMA-based MAC protocol to address the contention. From performance analysis, applying cognitive radio capability in D2D communication and allocating a common control channel for device users effectively improve the total aggregated network throughput by more than 60% compared to the individual D2D throughput without adding harmful interference to cellular network users. This approach can also reduce the delay.

The study on effective operation of ToP (Timing over Packet) (ToP (Timing over Packet)의 효과적인 운용 방안)

  • Kim, Jung-Hun;Shin, Jun-Hyo;Hong, Jin-Pyo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.136-141
    • /
    • 2007
  • The frequency accuracy and phase alignment is necessary for ensuring the quality of service (QoS) for applications such as voice, real-time video, wireless hand-off, and data over a converged access medium at the telecom network. As telecom networks evolve from circuit to packet switching, proper synchronization algorithm should be meditated for IP networks to achieve performance quality comparable to that of legacy circuit-switched networks. The Time of Packet (ToP) specified in IEEE 1588 is able to synchronize distributed clocks with an accuracy of less than one microsecond in packet networks. But, The ToP can be affected by impairments of a network such as packet delay variation. This paper proposes the efficient method to minimize the expectable delay variation when ToP synchronizes the distributed clocks. The simulation results are presented to demonstrate the improved performance case when the efficient ToP transmit algorithm is applied.

  • PDF

A Distributed Wireless Local Area Network (WLAN) Access Scheme for Efficient WLAN Communication in Busy Train Stations (혼잡 철도 역사에서 효율적인 무선랜 통신을 위한 무선랜 분산 접속 방법)

  • Koh, Seoung-Chon;Choi, Kyu-Hyoung;Kim, Ronny Yongho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.402-409
    • /
    • 2014
  • Wireless local area network (WLAN) is a widely used wireless access method due to its easy usability and excellent performance. However, its performance degrades significantly as the number of users increases. In busy train stations, where the number of WLAN users are large and, more importantly the number of simultaneous packet transmission attempts is extremely large due to the time synchronization upon train arrival, the packet transmission delay problem is very severe and almost impossible for WLAN stations to initiate communication with WLAN networks. In this paper, a novel distributed WLAN access scheme for efficient WLAN communication in busy train stations is proposed. Using the proposed scheme, WLAN access delay can be significantly reduced under highly congested traffic environments. Therefore, a significant performance enhancement for the WLAN performance used in the Communication Based Train Control (CBTC) can be achieved.

Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks (실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안)

  • Jang, Ho;Jeong, Won-Suk;Lee, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.600-609
    • /
    • 2009
  • The traditional carrier sense multiple access (CSMA) protocol like IEEE 802.11 Distributed Coordination Function (DCF) does not handle the constraints adequately, leading to degraded delay latency and throughput as the network scales are enlarged. We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is like the randomized CSMA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to severaansimes latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely using network simulation package,caS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to delay latency.

Performance analysis of BTB-TDMA considering asymmetry of propagation delays in UANets (수중 네트워크의 전파 비대칭성을 고려한 BTB-TDMA 성능 분석)

  • Cho, A-Ra;Yun, Changho;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • A Block-Time-Bounded Time Division Multiple Access (BTB-TDMA) medium access control protocol, which estimates the propagation delay of nodes according to their location and moving velocity information, has been proposed for underwater acoustic networks. BTB-TDMA provides nodes with their transmission schedules by a time block that is a time unit, newly designed for BTB-TDMA. In this paper, we investigate how the receiver collision, that is induced by the asymmetry between node's uplink and downlink propagation delay due to its mobility, affects the performance of BTB-TDMA. To do this, we analytically obtain the collision rate, the channel access delay, and the channel utilization by considering the asymmetry of propagation delay. Then, simulations are extensively performed with respect to the length of a time block by varying the number of nodes, the network range, and the node's velocity. Thus, the simulation results can suggest performance criteria to determine the optimal length of a time block which minimizes the collision rate and concurrently maximizes the channel access delay and the channel utilization.

Research on the Feasibility of DAP-NAD for Wideband Tactical Ad-hoc Network (광대역 전술 Ad-hoc Network를 위한 DAP-NAD 가용성에 대한 연구)

  • Han, Se-Won;Kim, Byung-Seo;Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.199-204
    • /
    • 2011
  • This paper evaluates on the feasibility of MIL-STD-188-220 protocol as a medium access protocol over WNW(Wideband Network Waveform) by simulating and comparing with IEEE 802.11e-based protocol. WNW is newly designed waveform for next-generation broadband tactical communication system. This paper shows the feasibility of using the MIL-STD-188-220 protocol that shows better performance than IEEE 802.11e-based protocol on the particular environment.

Performance Analysis of HomePNA 2.0 MAC Protocol (HomePNA 2.0 MAC 프로토콜의 성능 분석)

  • Kim, Jong-Won;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.877-885
    • /
    • 2005
  • The Home Phoneline Networking Alliance (HomePNA) 2.0 technology can establish a home network using existing in-home phone lines, which provides a channel rate of 4-32 Mbps. HomePNA 2.0 Medium Access Control(MAC) protocol adopts an IEEE 802.3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method, Quality of Service(QoS) algorithm, and Distributed Fair Priority Queuing(DFPQ) collision resolution algorithm. In this paper, we propose some mathematical models about the important elements of HomePNA 2.0 MAC protocol performance, which are Saturation Throughput, Packet Delay and Packet Jitter. Then, we present an overall performance analysis of HomePNA 2.0 MAC protocol along with simulations.

MARS: Multiple Access Radio Scheduling for a Multi-homed Mobile Device in Soft-RAN

  • Sun, Guolin;Eng, Kongmaing;Yin, Seng;Liu, Guisong;Min, Geyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • In order to improve the Quality-of-Service (QoS) of latency sensitive applications in next-generation cellular networks, multi-path is adopted to transmit packet stream in real-time to achieve high-quality video transmission in heterogeneous wireless networks. However, multi-path also introduces two important challenges: out-of-order issue and reordering delay. In this paper, we propose a new architecture based on Software Defined Network (SDN) for flow aggregation and flow splitting, and then design a Multiple Access Radio Scheduling (MARS) scheme based on relative Round-Trip Time (RTT) measurement. The QoS metrics including end-to-end delay, throughput and the packet out-of-order problem at the receiver have been investigated using the extensive simulation experiments. The performance results show that this SDN architecture coupled with the proposed MARS scheme can reduce the end-to-end delay and the reordering delay time caused by packet out-of-order as well as achieve a better throughput than the existing SMOS and Round-Robin algorithms.

Tele-test Systems for ASIC Design (ASIC 설계를 위한 원격 테스트 시스템)

  • 윤도현;강성호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.939-942
    • /
    • 1999
  • In this paper, Tele-Test System for ASIC Design is constructed. It consists of the server, and the clients. The server and clients are implemented by Java. Using Java RMI system, the remote access via information network is implemented. In this Tele-test system, fault simulation, test pattern compaction, test pattern generation, and path-delay fault test generation services are implemented. All service can be peformed parallel by network access.

  • PDF

A reinforcement learning-based network path planning scheme for SDN in multi-access edge computing

  • MinJung Kim;Ducsun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.16-24
    • /
    • 2024
  • With an increase in the relevance of next-generation integrated networking environments, the need to effectively utilize advanced networking techniques also increases. Specifically, integrating Software-Defined Networking (SDN) with Multi-access Edge Computing (MEC) is critical for enhancing network flexibility and addressing challenges such as security vulnerabilities and complex network management. SDN enhances operational flexibility by separating the control and data planes, introducing management complexities. This paper proposes a reinforcement learning-based network path optimization strategy within SDN environments to maximize performance, minimize latency, and optimize resource usage in MEC settings. The proposed Enhanced Proximal Policy Optimization (PPO)-based scheme effectively selects optimal routing paths in dynamic conditions, reducing average delay times to about 60 ms and lowering energy consumption. As the proposed method outperforms conventional schemes, it poses significant practical applications.