• Title/Summary/Keyword: Network분석

Search Result 14,476, Processing Time 0.071 seconds

A Study on Outplacement Countermeasure and Retention Level Examination Analysis about Outplacement Competency of Special Security Government Official (특정직 경호공무원의 전직역량에 대한 보유수준 분석 및 전직지원방안 연구)

  • Kim, Beom-Seok
    • Korean Security Journal
    • /
    • no.33
    • /
    • pp.51-80
    • /
    • 2012
  • This study is to summarize main contents which was mentioned by Beomseok Kim' doctoral dissertation. The purpose of this study focuses on presenting the outplacement countermeasure and retention level examination analysis about outplacement competency of special security government official through implement of questionnaire method. The questionnaire for retention level examination including four groups of outplacement competency and twenty subcategories was implemented in the object of six hundered persons relevant to outplacement more than forty age and five grade administration official of special security government officials, who have outplacement experiences as outplacement successors, outplacement losers, and outplacement expectants, in order to achieve this research purpose effectively. The questionnaire examination items are four groups of outplacement competency and twenty subcategories which are the group of knowledge competency & four subcategories including expert knowledge, outplacement knowledge, self comprehension, and organization comprehension, the group of skill competency & nine subcategories including job skill competency, job performance skill, problem-solving skill, reforming skill, communication skill, organization management skill, crisis management skill, career development skill, and human network application skill, the group of attitude-emotion competency & seven subcategories including positive attitude, active attitude, responsibility, professionalism, devoting-sacrificing attitude, affinity, and self-controlling ability, and the group of value-ethics competency & two subcategories including ethical consciousness and morality. The respondents highly regard twenty-two outplacement competency and they consider themselves well-qualified for the subcategories valued over 4.0 such as the professional knowledge, active attitude, responsibility, ethics and morality while they mark the other subcategories below average still need to be improved. Thus, the following is suggestions for successful outplacement. First, individual effort is essential to strengthen their capabilities based on accurate self evaluation, for which the awareness and concept need to be redefined to help them face up to the reality by readjusting career goal to a realistic level. Second, active career development plan to improve shortcoming in terms of outplacement competency is required. Third, it is necessary to establish the infrastructure related to outplacement training such as ON-OFF Line training system and facilities for learning to reinforce user-oriented outplacement training as a regular training course before during after the retirement.

  • PDF

Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin (치과용 복합레진으로 수리된 CAD-CAM hybrid 수복물의 전단결합강도)

  • Moon, Yun-Hee;Lee, Jonghyuk;Lee, Myung-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.193-202
    • /
    • 2016
  • Purpose: This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin. Materials and methods: LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a $37^{\circ}C$ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (${\alpha}=.05$). Results: Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen. Conclusion: The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

A Study on Strategy for developing LBS Entertainment content based on local tourist information (지역 관광 정보를 활용한 LBS 엔터테인먼트 컨텐츠 개발 방안에 관한 연구)

  • Kim, Hyun-Jeong
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.151-162
    • /
    • 2007
  • How can new media devices and networks provide an effective response to the world's growing sector of cultural and historically-minded travelers? This study emerged from the question of how mobile handsets can change the nature of cultural and historical tourism in ubiquitous city environments. As wireless network and mobile IT have rapidly developed, it becomes possible to deliver cultural and historical information on the site through mobile handset as a tour guidance system. The paper describes the development of a new type of mobile tourism platform for site-specific cultural and historical information. The central objective of the project was to organize this cultural and historical walking tour around the mobile handset and its unique advantages (i.e. portability, multi-media capacity, access to wireless internet, and location-awareness potential) and then integrate the tour with a historical story and role-playing game that would deepen the mobile user's interest in the sites being visited, and enhance his or her overall experience of the area. The project was based on twelve locations that were culturally and historically significant to Korean War era in Busan. After the mobile tour game prototype was developed for this route, it was evaluated at the 10th PIFF (Pusan International Film Festival). After use test, some new strategies for developing mobile "edutainment content" to deliver cultural historical contents of the location were discussed. Combining 'edutainment' with a cultural and historical mobile walking tour brings a new dimension to existing approaches of the tourism and mobile content industry.

  • PDF

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.

A Study on the establishment of IoT management process in terms of business according to Paradigm Shift (패러다임 전환에 의한 기업 측면의 IoT 경영 프로세스 구축방안 연구)

  • Jeong, Min-Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2015
  • This study examined the concepts of the Internet of Things(IoT), the major issue and IoT trend in the domestic and international market. also reviewed the advent of IoT era which caused a 'Paradigm Shift'. This study proposed a solution for the appropriate corresponding strategy in terms of Enterprise. Global competition began in the IoT market. So, Businesses to be competitive and responsive, the government's efforts, as well as the efforts of companies themselves is needed. In particular, in order to cope with the dynamic environment appropriately, faster and more efficient strategy is required. In other words, proposed a management strategy that can respond the IoT competitive era on tipping point through the vision of paradigm shift. We forecasted and proposed the emergence of paradigm shift through a comparative analysis of past management paradigm and IoT management paradigm as follow; I) Knowledge & learning oriented management, II) Technology & innovation oriented management, III) Demand driven management, IV) Global collaboration management. The Knowledge & learning oriented management paradigm is expected to be a new management paradigm due to the development of IT technology development and information processing technology. In addition to the rapid development such as IT infrastructure and processing of data, storage, knowledge sharing and learning has become more important. Currently Hardware-oriented management paradigm will be changed to the software-oriented paradigm. In particular, the software and platform market is a key component of the IoT ecosystem, has been estimated to be led by Technology & innovation oriented management. In 2011, Gartner announced the concept of "Demand-Driven Value Networks(DDVN)", DDVN emphasizes value of the whole of the network. Therefore, Demand driven management paradigm is creating demand for advanced process, not the process corresponding to the demand simply. Global collaboration management paradigm create the value creation through the fusion between technology, between countries, between industries. In particular, cooperation between enterprises that has financial resources and brand power and venture companies with creative ideas and technical will generate positive synergies. Through this, The large enterprises and small companies that can be win-win environment would be built. Cope with the a paradigm shift and to establish a management strategy of Enterprise process, this study utilized the 'RTE cyclone model' which proposed by Gartner. RTE concept consists of three stages, Lead, Operate, Manage. The Lead stage is utilizing capital to strengthen the business competitiveness. This stages has the goal of linking to external stimuli strategy development, also Execute the business strategy of the company for capital and investment activities and environmental changes. Manege stage is to respond appropriately to threats and internalize the goals of the enterprise. Operate stage proceeds to action for increasing the efficiency of the services across the enterprise, also achieve the integration and simplification of the process, with real-time data capture. RTE(Real Time Enterprise) concept has the value for practical use with the management strategy. Appropriately applied in this study, we propose a 'IoT-RTE Cyclone model' which emphasizes the agility of the enterprise. In addition, based on the real-time monitoring, analysis, act through IT and IoT technology. 'IoT-RTE Cyclone model' that could integrate the business processes of the enterprise each sector and support the overall service. therefore the model be used as an effective response strategy for Enterprise. In particular, IoT-RTE Cyclone Model is to respond to external events, waste elements are removed according to the process is repeated. Therefore, it is possible to model the operation of the process more efficient and agile. This IoT-RTE Cyclone Model can be used as an effective response strategy of the enterprise in terms of IoT era of rapidly changing because it supports the overall service of the enterprise. When this model leverages a collaborative system among enterprises it expects breakthrough cost savings through competitiveness, global lead time, minimizing duplication.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

Effects of Lipopolysaccride-induced Stressor on the Expression of Stress-related Genes in Two Breeds of Chickens (Lipopolysaccride 감염처리가 닭의 품종간 스트레스연관 유전자 발현에 미치는 영향)

  • Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The objective of the present study was to determine the expression of genes associated with lipopolysaccharide (LPS)-induced stressor in two breeds of chickens: the Korean native chicken (KNC) and the White Leghorn chicken (WLH). Forty chickens per breed, aged 40 weeks, were randomly allotted to the control (CON, administered the saline vehicle) and LPS-injected stress groups. Samples were collected at 0 and 48 h post-LPS injection, and total RNA was extracted from the chicken livers for RNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. In response to LPS, 1,044 and 1,193 genes were upregulated, and 1,000 and 1,072 genes were downregulated in the KNC and WLH, respectively, using a ${\geq}2$-fold cutoff change. A functional network analysis revealed that stress-related genes were downregulated in both KNC and WLH after LPS infection. The results obtained from the qRT-PCR analysis of mRNA expression of heat shock 90 (HSP90), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), activating transcription factor 4 (ATF4), sterol regulatory element-binding protein 1 (SREBP1), and X-box binding protein 1 (XBP1) were confirmed by the results of the microarray analysis. There was a significant difference in the expression of stress-associated genes between the control and LPS-injected KNC and WLH groups. The qRT-PCR analysis revealed that the stress-related $HSP90{\alpha}$ and HMGCR genes were downregulated in both LPS-injected KNC and WLH groups. However, the HSP70 and $HSP90{\beta}$ genes were upregulated only in the LPS-injected KNC group. The results suggest that the mRNA expression of stress-related genes is differentially affected by LPS stimulation, and some of the responses varied with the chicken breed. A better understanding of the LPS-induced infective stressors in chicken using the qRT-PCR and RNA microarray analyses may contribute to improving animal welfare and husbandry practices.

OD matrix estimation using link use proportion sample data as additional information (표본링크이용비를 추가정보로 이용한 OD 행렬 추정)

  • 백승걸;김현명;신동호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.83-93
    • /
    • 2002
  • To improve the performance of estimation, the research that uses additional information addition to traffic count and target OD with additional survey cost have been studied. The purpose of this paper is to improve the performance of OD estimation by reducing the feasible solutions with cost-efficiently additional information addition to traffic counts and target OD. For this purpose, we Propose the OD estimation method with sample link use proportion as additional information. That is, we obtain the relationship between OD trip and link flow from sample link use proportion that is high reliable information with roadside survey, not from the traffic assignment of target OD. Therefore, this paper proposes OD estimation algorithm in which the conservation of link flow rule under the path-based non-equilibrium traffic assignment concept. Numerical result with test network shows that it is possible to improve the performance of OD estimation where the precision of additional data is low, since sample link use Proportion represented the information showing the relationship between OD trip and link flow. And this method shows the robust performance of estimation where traffic count or OD trip be changed, since this method did not largely affected by the error of target OD and the one of traffic count. In addition to, we also propose that we must set the level of data precision by considering the level of other information precision, because "precision problem between information" is generated when we use additional information like sample link use proportion etc. And we Propose that the method using traffic count as basic information must obtain the link flow to certain level in order to high the applicability of additional information. Finally, we propose that additional information on link have a optimal counting location problem. Expecially by Precision of information side it is possible that optimal survey location problem of sample link use proportion have a much impact on the performance of OD estimation rather than optimal counting location problem of link flow.